It is now the 1st OPEN Period for CACAO Fall 2017! It will end on Sunday September 24, 2017 at 11:59 pm CDT
This is your chance to make annotations OR challenge other team's annotations. You may also DEFEND or suggest improvements to your own annotations IF they have been challenged. Please note, although we ENCOURAGE challenges, an excess of identical challenges that do not appear to be applicable to the annotation or well thought out will be considered spam and ignored.

Have any questions? Please email us at ecoliwiki@gmail.com

DROME:DECA

From GONUTS
Jump to: navigation, search
Species (Taxon ID) Drosophila melanogaster (Fruit fly). (7227)
Gene Name(s) dpp
Protein Name(s) Protein decapentaplegic

Protein DPP-C

External Links
UniProt P07713
EMBL M30116
U63857
AE014134
AE014134
AE014134
AE014134
BT015227
AF459545
AF459546
AF459547
AF459548
AF459549
AF459550
AF459551
AF459552
AF459553
AF459554
AF459555
AF459556
AF459557
AF459558
AF459559
AF459560
AF459561
AF459562
AF459563
AF459564
PIR A26158
RefSeq NP_477311.1
NP_722810.1
NP_722811.1
NP_722813.1
UniGene Dm.4767
ProteinModelPortal P07713
SMR P07713
BioGrid 59659
DIP DIP-19N
MINT MINT-1025264
PaxDb P07713
EnsemblMetazoa FBtr0077771
FBtr0077772
FBtr0077773
FBtr0077774
FBtr0077775
FBtr0310007
GeneID 33432
KEGG dme:Dmel_CG9885
UCSC CG9885-RB
CTD 33432
FlyBase FBgn0000490
eggNOG NOG243555
GeneTree ENSGT00760000118883
InParanoid P07713
KO K04662
OMA ITRVGVR
OrthoDB EOG7WHH9D
PhylomeDB P07713
Reactome REACT_241643
REACT_263672
SignaLink P07713
GenomeRNAi 33432
NextBio 783529
Proteomes UP000000803
Bgee P07713
GO GO:0005615
GO:0005622
GO:0005518
GO:0008201
GO:0016015
GO:0046982
GO:0042803
GO:0005160
GO:0007378
GO:0061327
GO:0009948
GO:0007448
GO:0030509
GO:0061353
GO:0035147
GO:0046845
GO:0010002
GO:0001709
GO:0001708
GO:0007304
GO:0001745
GO:0048066
GO:0046843
GO:0007391
GO:0007393
GO:0009950
GO:0007450
GO:0007398
GO:0001715
GO:0048619
GO:0007425
GO:0007427
GO:0035214
GO:0007455
GO:0007440
GO:0035156
GO:0035224
GO:0035215
GO:0035263
GO:0007281
GO:0042078
GO:0030718
GO:0007507
GO:0007516
GO:0007442
GO:0007444
GO:0007446
GO:0007447
GO:0007476
GO:0008586
GO:0007474
GO:0035217
GO:0035168
GO:0007479
GO:0048542
GO:0007443
GO:0007313
GO:0007498
GO:0008285
GO:0010629
GO:0045705
GO:0045476
GO:0048477
GO:0007424
GO:0030707
GO:0061320
GO:0048636
GO:0007458
GO:0045595
GO:0042127
GO:0008360
GO:0045570
GO:0046620
GO:0035158
GO:0007423
GO:0017145
GO:0019827
GO:0007179
GO:0035309
GO:0048100
GO:0035222
GO:0007473
GO:0007354
GO:0007352
Gene3D 2.10.90.10
InterPro IPR029034
IPR002405
IPR001839
IPR001111
IPR015615
IPR017948
PANTHER PTHR11848
Pfam PF00019
PF00688
PRINTS PR00669
SMART SM00204
SUPFAM SSF57501
PROSITE PS00250
PS51362

Annotations

Qualifier GO ID GO term name Reference Evidence Code with/from Aspect Notes Status
GO:0001708

cell fate specification

PMID:10512197[1]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0001708

cell fate specification

PMID:11290316[2]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0001709

cell fate determination

PMID:11432817[3]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0001715

ectodermal cell fate specification

PMID:11532914[4]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0001745

compound eye morphogenesis

PMID:11735386[5]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0001745

compound eye morphogenesis

PMID:17428827[6]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0005125

cytokine activity

GO_REF:0000033

IBA: Inferred from Biological aspect of Ancestor

PANTHER:PTN000218063

F

Seeded From UniProt

complete

GO:0005160

transforming growth factor beta receptor binding

GO_REF:0000033

IBA: Inferred from Biological aspect of Ancestor

PANTHER:PTN000218063

F

Seeded From UniProt

complete

GO:0005160

transforming growth factor beta receptor binding

PMID:10449347[7]

NAS: Non-traceable Author Statement

F

Seeded From UniProt

complete

GO:0005515

protein binding

PMID:17055473[8]

IPI: Inferred from Physical Interaction

FB:FBgn0263930

F

Seeded From UniProt

complete

GO:0005518

collagen binding

PMID:22733779[9]

IDA: Inferred from Direct Assay

F

Seeded From UniProt

complete

GO:0005576

extracellular region

GO_REF:0000002

IEA: Inferred from Electronic Annotation

InterPro:IPR002405

C

Seeded From UniProt

complete

GO:0005576

extracellular region

GO_REF:0000037

IEA: Inferred from Electronic Annotation

UniProtKB-KW:KW-0964

C

Seeded From UniProt

complete

GO:0005576

extracellular region

GO_REF:0000039

IEA: Inferred from Electronic Annotation

UniProtKB-SubCell:SL-0243

C

Seeded From UniProt

complete

GO:0005615

extracellular space

PMID:11136981[10]

IDA: Inferred from Direct Assay

C

Seeded From UniProt

complete

GO:0005615

extracellular space

PMID:11136982[11]

IDA: Inferred from Direct Assay

C

Seeded From UniProt

complete

GO:0005622

intracellular

PMID:11136982[11]

IDA: Inferred from Direct Assay

C

Seeded From UniProt

complete

GO:0007179

transforming growth factor beta receptor signaling pathway

PMID:10449347[7]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0007179

transforming growth factor beta receptor signaling pathway

PMID:11700289[12]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0007275

multicellular organismal development

GO_REF:0000037

IEA: Inferred from Electronic Annotation

UniProtKB-KW:KW-0217

P

Seeded From UniProt

complete

GO:0007281

germ cell development

PMID:16280348[13]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0007304

chorion-containing eggshell formation

PMID:15857915[14]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0007304

chorion-containing eggshell formation

PMID:8625842[15]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0007313

maternal specification of dorsal/ventral axis, oocyte, soma encoded

PMID:16781701[16]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0007352

zygotic specification of dorsal/ventral axis

PMID:11839291[17]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0007352

zygotic specification of dorsal/ventral axis

PMID:3123323[18]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0007354

zygotic determination of anterior/posterior axis, embryo

PMID:11290316[2]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007378

amnioserosa formation

PMID:11532914[4]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0007378

amnioserosa formation

PMID:14642751[19]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007391

dorsal closure

PMID:10449347[7]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007391

dorsal closure

PMID:11432817[3]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0007391

dorsal closure

PMID:11509232[20]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007391

dorsal closure

PMID:12000787[21]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0007391

dorsal closure

PMID:12147138[22]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007391

dorsal closure

PMID:9224720[23]

IGI: Inferred from Genetic Interaction

FB:FBgn0000229

P

Seeded From UniProt

complete

GO:0007393

dorsal closure, leading edge cell fate determination

PMID:12231351[24]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0007398

ectoderm development

PMID:11700289[12]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007398

ectoderm development

PMID:14642751[19]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007398

ectoderm development

PMID:15221856[25]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007423

sensory organ development

PMID:15273984[26]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007424

open tracheal system development

PMID:10684581[27]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007424

open tracheal system development

PMID:11432817[3]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0007424

open tracheal system development

PMID:12325126[28]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0007424

open tracheal system development

PMID:12791296[29]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007424

open tracheal system development

PMID:12885551[30]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007424

open tracheal system development

PMID:14570584[31]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007424

open tracheal system development

PMID:14624839[32]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007425

epithelial cell fate determination, open tracheal system

PMID:14570584[31]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007427

epithelial cell migration, open tracheal system

PMID:10943305[33]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007427

epithelial cell migration, open tracheal system

PMID:9226445[34]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0007440

foregut morphogenesis

PMID:10512197[1]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007442

hindgut morphogenesis

PMID:10512197[1]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007442

hindgut morphogenesis

PMID:11231061[35]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0007443

Malpighian tubule morphogenesis

PMID:20708591[36]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0007444

imaginal disc development

PMID:10934021[37]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007444

imaginal disc development

PMID:11136981[10]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0007446

imaginal disc growth

PMID:10679387[38]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007447

imaginal disc pattern formation

PMID:10679387[38]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007447

imaginal disc pattern formation

PMID:11377964[39]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0007447

imaginal disc pattern formation

PMID:11432817[3]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0007448

anterior/posterior pattern specification, imaginal disc

PMID:11432817[3]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0007450

dorsal/ventral pattern formation, imaginal disc

PMID:10497093[40]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007455

eye-antennal disc morphogenesis

PMID:17329368[41]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0007458

progression of morphogenetic furrow involved in compound eye morphogenesis

PMID:14616073[42]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007458

progression of morphogenetic furrow involved in compound eye morphogenesis

PMID:8252627[43]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0007473

wing disc proximal/distal pattern formation

PMID:12717815[44]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007474

imaginal disc-derived wing vein specification

PMID:10625531[45]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007474

imaginal disc-derived wing vein specification

PMID:11641216[46]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0007474

imaginal disc-derived wing vein specification

PMID:16643887[47]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0007476

imaginal disc-derived wing morphogenesis

PMID:11136981[10]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0007476

imaginal disc-derived wing morphogenesis

PMID:11875444[48]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007476

imaginal disc-derived wing morphogenesis

PMID:16648592[49]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0007479

leg disc proximal/distal pattern formation

PMID:10497093[40]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007479

leg disc proximal/distal pattern formation

PMID:10625531[45]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007479

leg disc proximal/distal pattern formation

PMID:11389824[50]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0007479

leg disc proximal/distal pattern formation

PMID:12194841[51]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007498

mesoderm development

PMID:14642751[19]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007498

mesoderm development

PMID:7700357[52]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0007507

heart development

PMID:10973066[53]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007507

heart development

PMID:12027431[54]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007507

heart development

PMID:7700357[52]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0007516

hemocyte development

PMID:18815369[55]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0008083

growth factor activity

GO_REF:0000002

IEA: Inferred from Electronic Annotation

InterPro:IPR001111
InterPro:IPR001839
InterPro:IPR017948

F

Seeded From UniProt

complete

GO:0008083

growth factor activity

GO_REF:0000037

IEA: Inferred from Electronic Annotation

UniProtKB-KW:KW-0339

F

Seeded From UniProt

complete

GO:0008201

heparin binding

PMID:19433798[56]

IDA: Inferred from Direct Assay

F

Seeded From UniProt

complete

GO:0008285

negative regulation of cell proliferation

PMID:12459723[57]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0008354

germ cell migration

PMID:24551179[58]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0008360

regulation of cell shape

PMID:15867930[59]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0008586

imaginal disc-derived wing vein morphogenesis

PMID:11641216[46]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0008586

imaginal disc-derived wing vein morphogenesis

PMID:15766758[60]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0009948

anterior/posterior axis specification

PMID:10878576[61]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0009950

dorsal/ventral axis specification

PMID:10903186[62]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0009950

dorsal/ventral axis specification

PMID:11432817[3]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0009950

dorsal/ventral axis specification

PMID:11700289[12]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0010002

cardioblast differentiation

PMID:15286786[63]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0010629

negative regulation of gene expression

PMID:16780828[64]

IDA: Inferred from Direct Assay

P

Seeded From UniProt

complete

GO:0010629

negative regulation of gene expression

PMID:16968133[65]

IEP: Inferred from Expression Pattern

P

Seeded From UniProt

complete

GO:0010862

positive regulation of pathway-restricted SMAD protein phosphorylation

GO_REF:0000033

IBA: Inferred from Biological aspect of Ancestor

PANTHER:PTN000218063

P

Seeded From UniProt

complete

GO:0016015

morphogen activity

PMID:11432817[3]

TAS: Traceable Author Statement

F

Seeded From UniProt

complete

GO:0016015

morphogen activity

PMID:11494318[66]

TAS: Traceable Author Statement

F

Seeded From UniProt

complete

GO:0016015

morphogen activity

PMID:11845195[67]

NAS: Non-traceable Author Statement

F

Seeded From UniProt

complete

GO:0016015

morphogen activity

PMID:12671654[68]

NAS: Non-traceable Author Statement

F

Seeded From UniProt

complete

GO:0017145

stem cell division

PMID:12194841[51]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0019827

stem cell maintenance

PMID:11432817[3]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0030154

cell differentiation

GO_REF:0000037

IEA: Inferred from Electronic Annotation

UniProtKB-KW:KW-0221

P

Seeded From UniProt

complete

GO:0030509

BMP signaling pathway

PMID:11290316[2]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0030509

BMP signaling pathway

PMID:7697720[69]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0030707

ovarian follicle cell development

PMID:10822261[70]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0030718

germ-line stem cell maintenance

PMID:9695953[71]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0030721

spectrosome organization

PMID:24551179[58]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0035147

branch fusion, open tracheal system

PMID:14570584[31]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0035156

fusion cell fate specification

PMID:10495279[72]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0035158

regulation of tube diameter, open tracheal system

PMID:10887083[73]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0035168

larval lymph gland hemocyte differentiation

PMID:18815369[55]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0035214

eye-antennal disc development

PMID:16814276[74]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0035215

genital disc development

PMID:11494318[66]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0035215

genital disc development

PMID:15893978[75]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0035217

labial disc development

PMID:15680366[76]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0035222

wing disc pattern formation

PMID:16643887[47]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0035222

wing disc pattern formation

PMID:9636086[77]

IGI: Inferred from Genetic Interaction

UniProtKB:P27091

P

Seeded From UniProt

complete

GO:0035222

wing disc pattern formation

PMID:9636086[77]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0035224

genital disc anterior/posterior pattern formation

PMID:8798147[78]

IEP: Inferred from Expression Pattern

P

Seeded From UniProt

complete

GO:0035263

genital disc sexually dimorphic development

PMID:11290302[79]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0035309

wing and notum subfield formation

PMID:12135920[80]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0036099

female germ-line stem cell maintenance

PMID:18371381[81]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0040007

growth

GO_REF:0000002

IEA: Inferred from Electronic Annotation

InterPro:IPR001111

P

Seeded From UniProt

complete

GO:0042078

germ-line stem cell division

PMID:11131529[82]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0042078

germ-line stem cell division

PMID:12459723[57]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0042078

germ-line stem cell division

PMID:15927177[83]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0042078

germ-line stem cell division

PMID:9695953[71]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0042127

regulation of cell proliferation

PMID:11494318[66]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0042803

protein homodimerization activity

PMID:15797386[84]

IPI: Inferred from Physical Interaction

UniProtKB:P07713

F

Seeded From UniProt

complete

GO:0042981

regulation of apoptotic process

GO_REF:0000033

IBA: Inferred from Biological aspect of Ancestor

PANTHER:PTN000218063

P

Seeded From UniProt

complete

GO:0043408

regulation of MAPK cascade

GO_REF:0000033

IBA: Inferred from Biological aspect of Ancestor

PANTHER:PTN000218063

P

Seeded From UniProt

complete

GO:0045476

nurse cell apoptotic process

PMID:11139272[85]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0045570

regulation of imaginal disc growth

PMID:16741075[86]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0045570

regulation of imaginal disc growth

PMID:17360439[87]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0045595

regulation of cell differentiation

PMID:20056890[88]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0045705

negative regulation of salivary gland boundary specification

PMID:11598957[89]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0045705

negative regulation of salivary gland boundary specification

PMID:12742168[90]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0046620

regulation of organ growth

PMID:11377964[39]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0046843

dorsal appendage formation

PMID:10648242[91]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0046843

dorsal appendage formation

PMID:15857915[14]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0046845

branched duct epithelial cell fate determination, open tracheal system

PMID:10684581[27]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0046845

branched duct epithelial cell fate determination, open tracheal system

PMID:11063940[92]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0046982

protein heterodimerization activity

PMID:15797386[84]

IPI: Inferred from Physical Interaction

UniProtKB:P54631

F

Seeded From UniProt

complete

GO:0048066

developmental pigmentation

PMID:12957543[93]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0048100

wing disc anterior/posterior pattern formation

PMID:10625531[45]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0048100

wing disc anterior/posterior pattern formation

PMID:12612640[94]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0048477

oogenesis

PMID:11131529[82]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0048542

lymph gland development

PMID:15286786[63]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0048619

embryonic hindgut morphogenesis

PMID:11231061[35]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0048636

positive regulation of muscle organ development

PMID:19244280[95]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0060323

head morphogenesis

PMID:22824425[96]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0060395

SMAD protein signal transduction

GO_REF:0000033

IBA: Inferred from Biological aspect of Ancestor

PANTHER:PTN000218063

P

Seeded From UniProt

complete

GO:0061320

pericardial nephrocyte differentiation

PMID:15286786[63]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0061327

anterior Malpighian tubule development

PMID:17190812[97]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0061327

anterior Malpighian tubule development

PMID:20708591[36]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0061353

BMP signaling pathway involved in Malpighian tubule cell chemotaxis

PMID:20708591[36]

IDA: Inferred from Direct Assay

P

Seeded From UniProt

complete

colocalizes_with

GO:0005768

endosome

PMID:21463595[98]

IDA: Inferred from Direct Assay

C

Seeded From UniProt

complete

colocalizes_with

GO:0035230

cytoneme

PMID:24385607[99]

IDA: Inferred from Direct Assay

C

Seeded From UniProt

complete

Notes

References

See Help:References for how to manage references in GONUTS.

  1. 1.0 1.1 1.2 Murakami, R et al. (1999) Developmental genetics of the Drosophila gut: specification of primordia, subdivision and overt-differentiation. Cell. Mol. Biol. (Noisy-le-grand) 45 661-76 PubMed GONUTS page
  2. 2.0 2.1 2.2 Ray, RP & Wharton, KA (2001) Twisted perspective: new insights into extracellular modulation of BMP signaling during development. Cell 104 801-4 PubMed GONUTS page
  3. 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 Affolter, M et al. (2001) Nuclear interpretation of Dpp signaling in Drosophila. EMBO J. 20 3298-305 PubMed GONUTS page
  4. 4.0 4.1 Stronach, BE & Perrimon, N (2001) Investigation of leading edge formation at the interface of amnioserosa and dorsal ectoderm in the Drosophila embryo. Development 128 2905-13 PubMed GONUTS page
  5. Baker, NE (2001) Cell proliferation, survival, and death in the Drosophila eye. Semin. Cell Dev. Biol. 12 499-507 PubMed GONUTS page
  6. Cordero, JB et al. (2007) Dynamic decapentaplegic signaling regulates patterning and adhesion in the Drosophila pupal retina. Development 134 1861-71 PubMed GONUTS page
  7. 7.0 7.1 7.2 Noselli, S & Agnès, F (1999) Roles of the JNK signaling pathway in Drosophila morphogenesis. Curr. Opin. Genet. Dev. 9 466-72 PubMed GONUTS page
  8. Kirkpatrick, CA et al. (2006) The function of a Drosophila glypican does not depend entirely on heparan sulfate modification. Dev. Biol. 300 570-82 PubMed GONUTS page
  9. Sawala, A et al. (2012) Multistep molecular mechanism for bone morphogenetic protein extracellular transport in the Drosophila embryo. Proc. Natl. Acad. Sci. U.S.A. 109 11222-7 PubMed GONUTS page
  10. 10.0 10.1 10.2 Teleman, AA & Cohen, SM (2000) Dpp gradient formation in the Drosophila wing imaginal disc. Cell 103 971-80 PubMed GONUTS page
  11. 11.0 11.1 Entchev, EV et al. (2000) Gradient formation of the TGF-beta homolog Dpp. Cell 103 981-91 PubMed GONUTS page
  12. 12.0 12.1 12.2 Lall, S & Patel, NH (2001) Conservation and divergence in molecular mechanisms of axis formation. Annu. Rev. Genet. 35 407-37 PubMed GONUTS page
  13. Xi, R et al. (2005) Pelota controls self-renewal of germline stem cells by repressing a Bam-independent differentiation pathway. Development 132 5365-74 PubMed GONUTS page
  14. 14.0 14.1 Muzzopappa, M & Wappner, P (2005) Multiple roles of the F-box protein Slimb in Drosophila egg chamber development. Development 132 2561-71 PubMed GONUTS page
  15. Twombly, V et al. (1996) The TGF-beta signaling pathway is essential for Drosophila oogenesis. Development 122 1555-65 PubMed GONUTS page
  16. Carneiro, K et al. (2006) Graded maternal short gastrulation protein contributes to embryonic dorsal-ventral patterning by delayed induction. Dev. Biol. 296 203-18 PubMed GONUTS page
  17. Taylor, MV (2002) Drosophila development: novel signal elicits visceral response. Curr. Biol. 12 R102-4 PubMed GONUTS page
  18. Irish, VF & Gelbart, WM (1987) The decapentaplegic gene is required for dorsal-ventral patterning of the Drosophila embryo. Genes Dev. 1 868-79 PubMed GONUTS page
  19. 19.0 19.1 19.2 Raftery, LA & Sutherland, DJ (2003) Gradients and thresholds: BMP response gradients unveiled in Drosophila embryos. Trends Genet. 19 701-8 PubMed GONUTS page
  20. Reed, BH et al. (2001) Downregulation of Jun kinase signaling in the amnioserosa is essential for dorsal closure of the Drosophila embryo. Curr. Biol. 11 1098-108 PubMed GONUTS page
  21. Van Aelst, L & Symons, M (2002) Role of Rho family GTPases in epithelial morphogenesis. Genes Dev. 16 1032-54 PubMed GONUTS page
  22. Harden, N (2002) Signaling pathways directing the movement and fusion of epithelial sheets: lessons from dorsal closure in Drosophila. Differentiation 70 181-203 PubMed GONUTS page
  23. Riesgo-Escovar, JR & Hafen, E (1997) Drosophila Jun kinase regulates expression of decapentaplegic via the ETS-domain protein Aop and the AP-1 transcription factor DJun during dorsal closure. Genes Dev. 11 1717-27 PubMed GONUTS page
  24. Martin, P & Wood, W (2002) Epithelial fusions in the embryo. Curr. Opin. Cell Biol. 14 569-74 PubMed GONUTS page
  25. Urbach, R & Technau, GM (2004) Neuroblast formation and patterning during early brain development in Drosophila. Bioessays 26 739-51 PubMed GONUTS page
  26. Treisman, JE (2004) Coming to our senses. Bioessays 26 825-8 PubMed GONUTS page
  27. 27.0 27.1 Zelzer, E & Shilo, BZ (2000) Cell fate choices in Drosophila tracheal morphogenesis. Bioessays 22 219-26 PubMed GONUTS page
  28. Davies, JA (2002) Do different branching epithelia use a conserved developmental mechanism? Bioessays 24 937-48 PubMed GONUTS page
  29. Uv, A et al. (2003) Drosophila tracheal morphogenesis: intricate cellular solutions to basic plumbing problems. Trends Cell Biol. 13 301-9 PubMed GONUTS page
  30. Ribeiro, C et al. (2003) Signaling systems, guided cell migration, and organogenesis: insights from genetic studies in Drosophila. Dev. Biol. 260 1-8 PubMed GONUTS page
  31. 31.0 31.1 31.2 Ghabrial, A et al. (2003) Branching morphogenesis of the Drosophila tracheal system. Annu. Rev. Cell Dev. Biol. 19 623-47 PubMed GONUTS page
  32. Nelson, WJ (2003) Tube morphogenesis: closure, but many openings remain. Trends Cell Biol. 13 615-21 PubMed GONUTS page
  33. Affolter, M (2000) Cell-cell interaction during Drosophila embryogenesis: novel mechanisms and molecules. Ernst Schering Res. Found. Workshop 65-79 PubMed GONUTS page
  34. Vincent, S et al. (1997) DPP controls tracheal cell migration along the dorsoventral body axis of the Drosophila embryo. Development 124 2741-50 PubMed GONUTS page
  35. 35.0 35.1 Takashima, S & Murakami, R (2001) Regulation of pattern formation in the Drosophila hindgut by wg, hh, dpp, and en. Mech. Dev. 101 79-90 PubMed GONUTS page
  36. 36.0 36.1 36.2 Bunt, S et al. (2010) Hemocyte-secreted type IV collagen enhances BMP signaling to guide renal tubule morphogenesis in Drosophila. Dev. Cell 19 296-306 PubMed GONUTS page
  37. Kubota, K et al. (2000) EGF receptor attenuates Dpp signaling and helps to distinguish the wing and leg cell fates in Drosophila. Development 127 3769-76 PubMed GONUTS page
  38. 38.0 38.1 Weinkove, D & Leevers, SJ (2000) The genetic control of organ growth: insights from Drosophila. Curr. Opin. Genet. Dev. 10 75-80 PubMed GONUTS page
  39. 39.0 39.1 Potter, CJ & Xu, T (2001) Mechanisms of size control. Curr. Opin. Genet. Dev. 11 279-86 PubMed GONUTS page
  40. 40.0 40.1 Marsh, JL & Theisen, H (1999) Regeneration in insects. Semin. Cell Dev. Biol. 10 365-75 PubMed GONUTS page
  41. Lee, H et al. (2007) The Zic family member, odd-paired, regulates the Drosophila BMP, decapentaplegic, during adult head development. Development 134 1301-10 PubMed GONUTS page
  42. Lee, LA & Orr-Weaver, TL (2003) Regulation of cell cycles in Drosophila development: intrinsic and extrinsic cues. Annu. Rev. Genet. 37 545-78 PubMed GONUTS page
  43. Heberlein, U et al. (1993) The TGF beta homolog dpp and the segment polarity gene hedgehog are required for propagation of a morphogenetic wave in the Drosophila retina. Cell 75 913-26 PubMed GONUTS page
  44. De Celis, JF (2003) Pattern formation in the Drosophila wing: The development of the veins. Bioessays 25 443-51 PubMed GONUTS page
  45. 45.0 45.1 45.2 Milán, M & Cohen, SM (2000) Subdividing cell populations in the developing limbs of Drosophila: do wing veins and leg segments define units of growth control? Dev. Biol. 217 1-9 PubMed GONUTS page
  46. 46.0 46.1 Ray, RP & Wharton, KA (2001) Context-dependent relationships between the BMPs gbb and dpp during development of the Drosophila wing imaginal disk. Development 128 3913-25 PubMed GONUTS page
  47. 47.0 47.1 Bangi, E & Wharton, K (2006) Dpp and Gbb exhibit different effective ranges in the establishment of the BMP activity gradient critical for Drosophila wing patterning. Dev. Biol. 295 178-93 PubMed GONUTS page
  48. Curtiss, J et al. (2002) Selector and signalling molecules cooperate in organ patterning. Nat. Cell Biol. 4 E48-51 PubMed GONUTS page
  49. Dworkin, I & Gibson, G (2006) Epidermal growth factor receptor and transforming growth factor-beta signaling contributes to variation for wing shape in Drosophila melanogaster. Genetics 173 1417-31 PubMed GONUTS page
  50. Teleman, AA et al. (2001) Shaping morphogen gradients. Cell 105 559-62 PubMed GONUTS page
  51. 51.0 51.1 Hombría, JC & Brown, S (2002) The fertile field of Drosophila Jak/STAT signalling. Curr. Biol. 12 R569-75 PubMed GONUTS page
  52. 52.0 52.1 Frasch, M (1995) Induction of visceral and cardiac mesoderm by ectodermal Dpp in the early Drosophila embryo. Nature 374 464-7 PubMed GONUTS page
  53. Chen, JN & Fishman, MC (2000) Genetics of heart development. Trends Genet. 16 383-8 PubMed GONUTS page
  54. Cripps, RM & Olson, EN (2002) Control of cardiac development by an evolutionarily conserved transcriptional network. Dev. Biol. 246 14-28 PubMed GONUTS page
  55. 55.0 55.1 Frandsen, JL et al. (2008) Salmonella pathogenesis reveals that BMP signaling regulates blood cell homeostasis and immune responses in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 105 14952-7 PubMed GONUTS page
  56. Künnapuu, J et al. (2009) The Drosophila DPP signal is produced by cleavage of its proprotein at evolutionary diversified furin-recognition sites. Proc. Natl. Acad. Sci. U.S.A. 106 8501-6 PubMed GONUTS page
  57. 57.0 57.1 Lin, H (2002) The stem-cell niche theory: lessons from flies. Nat. Rev. Genet. 3 931-40 PubMed GONUTS page
  58. 58.0 58.1 Deshpande, G et al. (2014) BMP signaling and the maintenance of primordial germ cell identity in Drosophila embryos. PLoS ONE 9 e88847 PubMed GONUTS page
  59. Schuldt, A (2005) Dpp gets in shape. Nat. Cell Biol. 7 456 PubMed GONUTS page
  60. Ralston, A & Blair, SS (2005) Long-range Dpp signaling is regulated to restrict BMP signaling to a crossvein competent zone. Dev. Biol. 280 187-200 PubMed GONUTS page
  61. Martín-Blanco, E (2000) p38 MAPK signalling cascades: ancient roles and new functions. Bioessays 22 637-45 PubMed GONUTS page
  62. Araujo, H & Bier, E (2000) sog and dpp exert opposing maternal functions to modify toll signaling and pattern the dorsoventral axis of the Drosophila embryo. Development 127 3631-44 PubMed GONUTS page
  63. 63.0 63.1 63.2 Mandal, L et al. (2004) Evidence for a fruit fly hemangioblast and similarities between lymph-gland hematopoiesis in fruit fly and mammal aorta-gonadal-mesonephros mesoderm. Nat. Genet. 36 1019-23 PubMed GONUTS page
  64. Anderson, J et al. (2006) Regulation of the retinal determination gene dachshund in the embryonic head and developing eye of Drosophila. Dev. Biol. 297 536-49 PubMed GONUTS page
  65. Mizutani, CM et al. (2006) Threshold-dependent BMP-mediated repression: a model for a conserved mechanism that patterns the neuroectoderm. PLoS Biol. 4 e313 PubMed GONUTS page
  66. 66.0 66.1 66.2 Sánchez, L & Guerrero, I (2001) The development of the Drosophila genital disc. Bioessays 23 698-707 PubMed GONUTS page
  67. Patel, NH & Lall, S (2002) Precision patterning. Nature 415 748-9 PubMed GONUTS page
  68. Martinez Arias, A (2003) Wnts as morphogens? The view from the wing of Drosophila. Nat. Rev. Mol. Cell Biol. 4 321-5 PubMed GONUTS page
  69. Letsou, A et al. (1995) Drosophila Dpp signaling is mediated by the punt gene product: a dual ligand-binding type II receptor of the TGF beta receptor family. Cell 80 899-908 PubMed GONUTS page
  70. Dobens, LL & Raftery, LA (2000) Integration of epithelial patterning and morphogenesis in Drosophila ovarian follicle cells. Dev. Dyn. 218 80-93 PubMed GONUTS page
  71. 71.0 71.1 Xie, T & Spradling, AC (1998) decapentaplegic is essential for the maintenance and division of germline stem cells in the Drosophila ovary. Cell 94 251-60 PubMed GONUTS page
  72. Steneberg, P et al. (1999) Dpp and Notch specify the fusion cell fate in the dorsal branches of the Drosophila trachea. Mech. Dev. 87 153-63 PubMed GONUTS page
  73. Beitel, GJ & Krasnow, MA (2000) Genetic control of epithelial tube size in the Drosophila tracheal system. Development 127 3271-82 PubMed GONUTS page
  74. Stultz, BG et al. (2006) Decapentaplegic head capsule mutations disrupt novel peripodial expression controlling the morphogenesis of the Drosophila ventral head. Dev. Biol. 296 329-39 PubMed GONUTS page
  75. Chen, EH et al. (2005) Allocation and specification of the genital disc precursor cells in Drosophila. Dev. Biol. 281 270-85 PubMed GONUTS page
  76. Joulia, L et al. (2005) Homeotic proboscipedia function modulates hedgehog-mediated organizer activity to pattern adult Drosophila mouthparts. Dev. Biol. 278 496-510 PubMed GONUTS page
  77. 77.0 77.1 Khalsa, O et al. (1998) TGF-beta/BMP superfamily members, Gbb-60A and Dpp, cooperate to provide pattern information and establish cell identity in the Drosophila wing. Development 125 2723-34 PubMed GONUTS page
  78. Freeland, DE & Kuhn, DT (1996) Expression patterns of developmental genes reveal segment and parasegment organization of D. melanogaster genital discs. Mech. Dev. 56 61-72 PubMed GONUTS page
  79. Keisman, EL & Baker, BS (2001) The Drosophila sex determination hierarchy modulates wingless and decapentaplegic signaling to deploy dachshund sex-specifically in the genital imaginal disc. Development 128 1643-56 PubMed GONUTS page
  80. Cavodeassi, F et al. (2002) Dpp signalling is a key effector of the wing-body wall subdivision of the Drosophila mesothorax. Development 129 3815-23 PubMed GONUTS page
  81. Pan, L et al. (2007) Stem cell aging is controlled both intrinsically and extrinsically in the Drosophila ovary. Cell Stem Cell 1 458-69 PubMed GONUTS page
  82. 82.0 82.1 Deng, W & Lin, H (2001) Asymmetric germ cell division and oocyte determination during Drosophila oogenesis. Int. Rev. Cytol. 203 93-138 PubMed GONUTS page
  83. Kai, T et al. (2005) The expression profile of purified Drosophila germline stem cells. Dev. Biol. 283 486-502 PubMed GONUTS page
  84. 84.0 84.1 Shimmi, O et al. (2005) Facilitated transport of a Dpp/Scw heterodimer by Sog/Tsg leads to robust patterning of the Drosophila blastoderm embryo. Cell 120 873-86 PubMed GONUTS page
  85. Kumar, S (2000) Cell death in the fly comes of age. Cell Death Differ. 7 1021-4 PubMed GONUTS page
  86. Crickmore, MA & Mann, RS (2006) Hox control of organ size by regulation of morphogen production and mobility. Science 313 63-8 PubMed GONUTS page
  87. Hufnagel, L et al. (2007) On the mechanism of wing size determination in fly development. Proc. Natl. Acad. Sci. U.S.A. 104 3835-40 PubMed GONUTS page
  88. Mathur, D et al. (2010) A transient niche regulates the specification of Drosophila intestinal stem cells. Science 327 210-3 PubMed GONUTS page
  89. Bradley, PL et al. (2001) Organ formation in Drosophila: specification and morphogenesis of the salivary gland. Bioessays 23 901-11 PubMed GONUTS page
  90. Abrams, EW et al. (2003) Constructing an organ: the Drosophila salivary gland as a model for tube formation. Trends Cell Biol. 13 247-54 PubMed GONUTS page
  91. Peri, F & Roth, S (2000) Combined activities of Gurken and decapentaplegic specify dorsal chorion structures of the Drosophila egg. Development 127 841-50 PubMed GONUTS page
  92. Affolter, M & Shilo, BZ (2000) Genetic control of branching morphogenesis during Drosophila tracheal development. Curr. Opin. Cell Biol. 12 731-5 PubMed GONUTS page
  93. Wittkopp, PJ et al. (2003) Evolution in black and white: genetic control of pigment patterns in Drosophila. Trends Genet. 19 495-504 PubMed GONUTS page
  94. González-Gaitán, M (2003) Signal dispersal and transduction through the endocytic pathway. Nat. Rev. Mol. Cell Biol. 4 213-24 PubMed GONUTS page
  95. Jaramillo, MS et al. (2009) Crossveinless and the TGFbeta pathway regulate fiber number in the Drosophila adult jump muscle. Development 136 1105-13 PubMed GONUTS page
  96. Stultz, BG et al. (2012) Hox proteins coordinate peripodial decapentaplegic expression to direct adult head morphogenesis in Drosophila. Dev. Biol. 369 362-76 PubMed GONUTS page
  97. Hatton-Ellis, E et al. (2007) Genetic regulation of patterned tubular branching in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 104 169-74 PubMed GONUTS page
  98. Semrau, S et al. (2011) Quantification of biological interactions with particle image cross-correlation spectroscopy (PICCS). Biophys. J. 100 1810-8 PubMed GONUTS page
  99. Roy, S et al. (2014) Cytoneme-mediated contact-dependent transport of the Drosophila decapentaplegic signaling protein. Science 343 1244624 PubMed GONUTS page