It is now the 1st OPEN Period for CACAO Fall 2017! It will end on Sunday September 24, 2017 at 11:59 pm CDT
This is your chance to make annotations OR challenge other team's annotations. You may also DEFEND or suggest improvements to your own annotations IF they have been challenged. Please note, although we ENCOURAGE challenges, an excess of identical challenges that do not appear to be applicable to the annotation or well thought out will be considered spam and ignored.

Have any questions? Please email us at ecoliwiki@gmail.com

DROME:EGFR

From GONUTS
Jump to: navigation, search
Species (Taxon ID) Drosophila melanogaster (Fruit fly). (7227)
Gene Name(s) Egfr (synonyms: c-erbB, DER, top)
Protein Name(s) Epidermal growth factor receptor

Egfr Drosophila relative of ERBB Gurken receptor Protein torpedo

External Links
UniProt P04412
EMBL AF052754
AF052753
AF052754
AF052752
K03054
K03417
K03416
AF109077
AF109078
AF109082
AF109078
AF109084
AF109079
AF109081
AF109079
AF109083
AF109080
AE013599
X02293
AJ002912
X78920
X78918
X78919
PIR A00640
RefSeq NP_476759.1
PDB 3I2T
3LTF
3LTG
PDBsum 3I2T
3LTF
3LTG
ProteinModelPortal P04412
SMR P04412
BioGrid 63083
DIP DIP-17316N
IntAct P04412
MINT MINT-806082
PaxDb P04412
GeneID 37455
KEGG dme:Dmel_CG10079
CTD 1956
FlyBase FBgn0003731
eggNOG COG0515
InParanoid P04412
KO K04361
OrthoDB EOG7SV0TH
PhylomeDB P04412
BRENDA 2.7.10.1
Reactome REACT_180799
REACT_181313
REACT_181975
REACT_182055
REACT_184384
REACT_202927
REACT_203905
REACT_210116
REACT_212353
REACT_212366
REACT_214005
REACT_214264
REACT_217475
REACT_217656
REACT_233569
REACT_234406
REACT_240291
REACT_250163
REACT_262116
REACT_263006
SignaLink P04412
ChiTaRS Egfr
EvolutionaryTrace P04412
GenomeRNAi 37455
NextBio 803734
Proteomes UP000000803
Bgee P04412
ExpressionAtlas P04412
GO GO:0016021
GO:0005886
GO:0005524
GO:0005006
GO:0004713
GO:0004888
GO:0007469
GO:0009952
GO:0048149
GO:0007350
GO:0007298
GO:0007420
GO:0046845
GO:0045165
GO:0001709
GO:0030031
GO:0030381
GO:0042676
GO:0048749
GO:0001745
GO:0001751
GO:0001752
GO:0035225
GO:0048546
GO:0046843
GO:0007391
GO:0009953
GO:0000578
GO:0009880
GO:0007173
GO:0061331
GO:0035088
GO:0001654
GO:0007455
GO:0048139
GO:0000086
GO:0007369
GO:0007390
GO:0030718
GO:0008406
GO:0007482
GO:0003015
GO:0007444
GO:0007447
GO:0007476
GO:0008586
GO:0007474
GO:0007479
GO:0035160
GO:0048140
GO:0007443
GO:0008071
GO:0002009
GO:0016333
GO:0016203
GO:0042694
GO:0043066
GO:2001234
GO:0046673
GO:2000134
GO:0022008
GO:0035310
GO:0007477
GO:0001742
GO:0008355
GO:0016318
GO:0007314
GO:0007309
GO:0007310
GO:0048477
GO:0007424
GO:0018108
GO:0007422
GO:0008284
GO:0090303
GO:0007458
GO:0006468
GO:0045466
GO:0045610
GO:0007346
GO:0045468
GO:0007431
GO:0016330
GO:0007367
GO:0016337
GO:0035277
GO:0048865
GO:0007421
GO:0035202
GO:0035309
GO:0007472
GO:0007473
Gene3D 3.80.20.20
InterPro IPR006211
IPR006212
IPR009030
IPR011009
IPR000719
IPR017441
IPR000494
IPR001245
IPR008266
IPR020635
Pfam PF00757
PF07714
PF01030
PRINTS PR00109
SMART SM00261
SM00219
SUPFAM SSF56112
SSF57184
PROSITE PS00107
PS50011
PS00109

Annotations

Qualifier GO ID GO term name Reference Evidence Code with/from Aspect Notes Status
GO:0005006

epidermal growth factor receptor activity

PMID:21340027[1]

IMP: Inferred from Mutant Phenotype

F

Figure 1. (A and A') The EGFR activity is correlated with the morphology of dorsal appendages. Two dorsal appendages indicate normal activity of EGFR (wt). (B and B') Two dorsal appendages fused at the base indicate low level of EGFR activity (V1), whereas (C and C') one fused dorsal appendage indicates a even lower level of EGFR activity (V2). (D and D') No appendage indicates the lowest level of EGFR activity (V3).

complete

GO:0004872

receptor activity

PMID:22574233[2]

IDA: Inferred from Direct Assay

F

Figure 2 shows that the EGFR ligand activates the RAS-RAF-MEK and P13K-AKT-mTOR pathways that leads to cell survival and cancer cell proliferation.

complete
CACAO 9405

GO:0000086

G2/M transition of mitotic cell cycle

PMID:14616073[3]

TAS: Traceable Author Statement

P

complete

GO:0009792

embryo development ending in birth or egg hatching

PMID:8070664[4]

IMP: Inferred from Mutant Phenotype

P

Table 2. Molecular alterations associated with torpedo mutations.

complete
CACAO 3412

GO:0000086

G2/M transition of mitotic cell cycle

PMID:14616073[3]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0000166

nucleotide binding

GO_REF:0000004

IEA: Inferred from Electronic Annotation

SP_KW:KW-0547

F

complete

GO:0000166

nucleotide binding

GO_REF:0000037

IEA: Inferred from Electronic Annotation

UniProtKB-KW:KW-0547

F

Seeded From UniProt

complete

GO:0001654

eye development

PMID:14536058[5]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0000578

embryonic axis specification

PMID:11369216[6]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0001709

cell fate determination

PMID:12648473[7]

TAS: Traceable Author Statement

P

complete

GO:0001654

eye development

PMID:14536058[5]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0001709

cell fate determination

PMID:14616073[3]

TAS: Traceable Author Statement

P

complete

GO:0001709

cell fate determination

PMID:12648473[7]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0001709

cell fate determination

PMID:9631645[8]

TAS: Traceable Author Statement

P

complete

GO:0001709

cell fate determination

PMID:14616073[3]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0001742

oenocyte differentiation

PMID:12648473[7]

TAS: Traceable Author Statement

P

complete

GO:0001709

cell fate determination

PMID:9631645[8]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0001745

compound eye morphogenesis

PMID:14616073[3]

TAS: Traceable Author Statement

P

complete

GO:0001742

oenocyte differentiation

PMID:12648473[7]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0001751

compound eye photoreceptor cell differentiation

PMID:11735386[9]

TAS: Traceable Author Statement

P

complete

GO:0001745

compound eye morphogenesis

PMID:14616073[3]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0001751

compound eye photoreceptor cell differentiation

PMID:16377567[10]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0001751

compound eye photoreceptor cell differentiation

PMID:11735386[9]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0001752

compound eye photoreceptor fate commitment

PMID:9631645[8]

TAS: Traceable Author Statement

P

complete

GO:0001751

compound eye photoreceptor cell differentiation

PMID:16377567[10]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0002009

morphogenesis of an epithelium

PMID:9927461[11]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0001752

compound eye photoreceptor fate commitment

PMID:9631645[8]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0003015

heart process

PMID:20523889[12]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0002009

morphogenesis of an epithelium

PMID:9927461[11]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0004672

protein kinase activity

GO_REF:0000002

IEA: Inferred from Electronic Annotation

InterPro:IPR000719

F

complete

GO:0003015

heart process

PMID:20523889[12]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0004672

protein kinase activity

GO_REF:0000002

IEA: Inferred from Electronic Annotation

InterPro:IPR001245

F

complete

GO:0004672

protein kinase activity

GO_REF:0000002

IEA: Inferred from Electronic Annotation

InterPro:IPR000719
InterPro:IPR001245
InterPro:IPR008266

F

Seeded From UniProt

complete

GO:0004713

protein tyrosine kinase activity

GO_REF:0000002

IEA: Inferred from Electronic Annotation

InterPro:IPR008266

F

complete

GO:0004713

protein tyrosine kinase activity

GO_REF:0000002

IEA: Inferred from Electronic Annotation

InterPro:IPR020635

F

Seeded From UniProt

complete

GO:0004713

protein tyrosine kinase activity

GO_REF:0000002

IEA: Inferred from Electronic Annotation

InterPro:IPR020635

F

complete

GO:0004713

protein tyrosine kinase activity

GO_REF:0000037

IEA: Inferred from Electronic Annotation

UniProtKB-KW:KW-0829

F

Seeded From UniProt

complete

GO:0004713

protein tyrosine kinase activity

GO_REF:0000004

IEA: Inferred from Electronic Annotation

SP_KW:KW-0829

F

complete

GO:0004713

protein tyrosine kinase activity

PMID:10908587[13]

NAS: Non-traceable Author Statement

F

Seeded From UniProt

complete

GO:0004713

protein tyrosine kinase activity

PMID:10908587[13]

NAS: Non-traceable Author Statement

F

complete

GO:0004714

transmembrane receptor protein tyrosine kinase activity

GO_REF:0000002

IEA: Inferred from Electronic Annotation

InterPro:IPR006211

F

Seeded From UniProt

complete

GO:0004714

transmembrane receptor protein tyrosine kinase activity

GO_REF:0000002

IEA: Inferred from Electronic Annotation

InterPro:IPR006211

F

complete

GO:0004714

transmembrane receptor protein tyrosine kinase activity

GO_REF:0000003

IEA: Inferred from Electronic Annotation

EC:2.7.10.1

F

Seeded From UniProt

complete

GO:0004714

transmembrane receptor protein tyrosine kinase activity

GO_REF:0000003

IEA: Inferred from Electronic Annotation

EC:2.7.10.1

F

complete

GO:0004888

transmembrane signaling receptor activity

PMID:12879448[14]

TAS: Traceable Author Statement

F

Seeded From UniProt

complete

GO:0005006

epidermal growth factor-activated receptor activity

PMID:2982499[15]

ISS: Inferred from Sequence or Structural Similarity

F

Seeded From UniProt

Missing: with/from

GO:0004872

receptor activity

PMID:22574233[2]

IDA: Inferred from Direct Assay

F

Figure 2 shows that the EGFR ligand activates the RAS-RAF-MEK and P13K-AKT-mTOR pathways that ultimately leads to cancer cell survival and proliferation.

complete
CACAO 9408

GO:0005006

epidermal growth factor-activated receptor activity

PMID:9631645[8]

TAS: Traceable Author Statement

F

Seeded From UniProt

complete

GO:0004888

transmembrane signaling receptor activity

PMID:12879448[14]

TAS: Traceable Author Statement

F

complete

GO:0005515

protein binding

PMID:16054027[16]

IPI: Inferred from Physical Interaction

FB:FBgn0020224
FB:FBgn0085443

F

Seeded From UniProt

complete

GO:0005006

epidermal growth factor receptor activity

PMID:9631645[8]

TAS: Traceable Author Statement

F

complete

GO:0005515

protein binding

PMID:20723758[17]

IPI: Inferred from Physical Interaction

UniProtKB:Q01083

F

Seeded From UniProt

complete

GO:0005515

protein binding

PMID:14605208[18]

IPI: Inferred from Physical Interaction

UniProtKB:Q9VBY7

F

complete

GO:0005515

protein binding

PMID:23827685[19]

IPI: Inferred from Physical Interaction

UniProtKB:P91643

F

Seeded From UniProt

complete

GO:0005515

protein binding

PMID:9178769[20]

IPI: Inferred from Physical Interaction

UniProtKB:Q9VSK2

F

complete

GO:0005524

ATP binding

GO_REF:0000002

IEA: Inferred from Electronic Annotation

InterPro:IPR000719
InterPro:IPR006211
InterPro:IPR017441

F

Seeded From UniProt

complete

GO:0005524

ATP binding

GO_REF:0000002

IEA: Inferred from Electronic Annotation

InterPro:IPR000719

F

complete

GO:0005524

ATP binding

GO_REF:0000037

IEA: Inferred from Electronic Annotation

UniProtKB-KW:KW-0067

F

Seeded From UniProt

complete

GO:0005524

ATP binding

GO_REF:0000002

IEA: Inferred from Electronic Annotation

InterPro:IPR006211

F

complete

GO:0005886

plasma membrane

PMID:16054027[16]

IDA: Inferred from Direct Assay

C

Seeded From UniProt

complete

GO:0005524

ATP binding

GO_REF:0000002

IEA: Inferred from Electronic Annotation

InterPro:IPR017441

F

complete

GO:0005886

plasma membrane

PMID:19317464[21]

IDA: Inferred from Direct Assay

C

Seeded From UniProt

complete

GO:0005524

ATP binding

GO_REF:0000004

IEA: Inferred from Electronic Annotation

SP_KW:KW-0067

F

complete

GO:0005886

plasma membrane

PMID:9154002[22]

TAS: Traceable Author Statement

C

Seeded From UniProt

complete

GO:0005886

plasma membrane

PMID:9154002[22]

TAS: Traceable Author Statement

C

complete

GO:0006468

protein phosphorylation

GO_REF:0000002

IEA: Inferred from Electronic Annotation

InterPro:IPR000719
InterPro:IPR001245
InterPro:IPR006211
InterPro:IPR008266
InterPro:IPR020635

P

Seeded From UniProt

complete

GO:0006468

protein phosphorylation

GO_REF:0000002

IEA: Inferred from Electronic Annotation

InterPro:IPR000719

P

complete

GO:0006468

protein phosphorylation

PMID:10908587[13]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0006468

protein phosphorylation

GO_REF:0000002

IEA: Inferred from Electronic Annotation

InterPro:IPR001245

P

complete

GO:0007169

transmembrane receptor protein tyrosine kinase signaling pathway

GO_REF:0000002

IEA: Inferred from Electronic Annotation

InterPro:IPR006211

P

Seeded From UniProt

complete

GO:0006468

protein phosphorylation

GO_REF:0000002

IEA: Inferred from Electronic Annotation

InterPro:IPR006211

P

complete

GO:0007173

epidermal growth factor receptor signaling pathway

PMID:9154002[22]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0006468

protein phosphorylation

GO_REF:0000002

IEA: Inferred from Electronic Annotation

InterPro:IPR008266

P

complete

GO:0007275

multicellular organismal development

GO_REF:0000037

IEA: Inferred from Electronic Annotation

UniProtKB-KW:KW-0217

P

Seeded From UniProt

complete

GO:0006468

protein phosphorylation

PMID:10908587[13]

NAS: Non-traceable Author Statement

P

complete

GO:0007298

border follicle cell migration

PMID:11141565[23]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0006916

anti-apoptosis

PMID:11832236[24]

NAS: Non-traceable Author Statement

P

complete

GO:0007298

border follicle cell migration

PMID:12648473[7]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007169

transmembrane receptor protein tyrosine kinase signaling pathway

GO_REF:0000002

IEA: Inferred from Electronic Annotation

InterPro:IPR006211

P

complete

GO:0007298

border follicle cell migration

PMID:12885551[25]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007173

epidermal growth factor receptor signaling pathway

PMID:9154002[22]

TAS: Traceable Author Statement

P

complete

GO:0007298

border follicle cell migration

PMID:16054027[16]

IGI: Inferred from Genetic Interaction

FB:FBgn0020224

P

Seeded From UniProt

complete

GO:0007275

multicellular organismal development

GO_REF:0000004

IEA: Inferred from Electronic Annotation

SP_KW:KW-0217

P

complete

GO:0007298

border follicle cell migration

PMID:16054027[16]

IGI: Inferred from Genetic Interaction

FB:FBgn0032006

P

Seeded From UniProt

complete

GO:0007298

border follicle cell migration

PMID:11141565[23]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0007298

border follicle cell migration

PMID:16712835[26]

IGI: Inferred from Genetic Interaction

FB:FBgn0032006

P

Seeded From UniProt

complete

GO:0007298

border follicle cell migration

PMID:12648473[7]

TAS: Traceable Author Statement

P

complete

GO:0007309

oocyte axis specification

PMID:16908845[27]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0007298

border follicle cell migration

PMID:12885551[25]

TAS: Traceable Author Statement

P

complete

GO:0007310

oocyte dorsal/ventral axis specification

PMID:9642168[28]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0007298

border follicle cell migration

PMID:16054027[16]

IGI: Inferred from Genetic Interaction

FB:FBgn0020224

P

complete

GO:0007314

oocyte anterior/posterior axis specification

PMID:10878576[29]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0007298

border follicle cell migration

PMID:16054027[16]

IGI: Inferred from Genetic Interaction

FB:FBgn0032006

P

complete

GO:0007314

oocyte anterior/posterior axis specification

PMID:9642168[28]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0007298

border follicle cell migration

PMID:16712835[26]

IGI: Inferred from Genetic Interaction

FB:FBgn0032006

P

complete

GO:0007346

regulation of mitotic cell cycle

PMID:14616073[3]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007309

oocyte axis specification

PMID:16908845[27]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0007350

blastoderm segmentation

PMID:12648473[7]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007310

oocyte dorsal/ventral axis specification

PMID:9642168[28]

NAS: Non-traceable Author Statement

P

complete

GO:0007367

segment polarity determination

PMID:15930099[30]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0007314

oocyte anterior/posterior axis specification

PMID:10878576[29]

NAS: Non-traceable Author Statement

P

complete

GO:0007369

gastrulation

PMID:12648473[7]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007314

oocyte anterior/posterior axis specification

PMID:9642168[28]

NAS: Non-traceable Author Statement

P

complete

GO:0007390

germ-band shortening

PMID:12648473[7]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007346

regulation of mitotic cell cycle

PMID:14616073[3]

TAS: Traceable Author Statement

P

complete

GO:0007390

germ-band shortening

PMID:8946251[31]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0007350

blastoderm segmentation

PMID:12648473[7]

TAS: Traceable Author Statement

P

complete

GO:0007390

germ-band shortening

PMID:9927461[11]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0007367

segment polarity determination

PMID:15930099[30]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0007391

dorsal closure

PMID:23579691[32]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0007369

gastrulation

PMID:12648473[7]

TAS: Traceable Author Statement

P

complete

GO:0007391

dorsal closure

PMID:9927461[11]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0007390

germ-band shortening

PMID:12648473[7]

TAS: Traceable Author Statement

P

complete

GO:0007420

brain development

PMID:12648473[7]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007390

germ-band shortening

PMID:8946251[31]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0007421

stomatogastric nervous system development

PMID:12648473[7]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007390

germ-band shortening

PMID:9927461[11]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0007422

peripheral nervous system development

PMID:12967983[33]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0007391

dorsal closure

PMID:9927461[11]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0007424

open tracheal system development

PMID:10684581[34]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007420

brain development

PMID:12648473[7]

TAS: Traceable Author Statement

P

complete

GO:0007424

open tracheal system development

PMID:11063940[35]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007421

stomatogastric nervous system development

PMID:12648473[7]

TAS: Traceable Author Statement

P

complete

GO:0007424

open tracheal system development

PMID:12648473[7]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007422

peripheral nervous system development

PMID:12967983[33]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0007424

open tracheal system development

PMID:12791296[36]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007424

open tracheal system development

PMID:10684581[34]

TAS: Traceable Author Statement

P

complete

GO:0007431

salivary gland development

PMID:9927461[11]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0007424

open tracheal system development

PMID:11063940[35]

TAS: Traceable Author Statement

P

complete

GO:0007443

Malpighian tubule morphogenesis

PMID:12648473[7]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007424

open tracheal system development

PMID:12648473[7]

TAS: Traceable Author Statement

P

complete

GO:0007443

Malpighian tubule morphogenesis

PMID:9927461[11]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0007424

open tracheal system development

PMID:12791296[36]

TAS: Traceable Author Statement

P

complete

GO:0007444

imaginal disc development

PMID:10934021[37]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0007431

salivary gland development

PMID:9927461[11]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0007444

imaginal disc development

PMID:11369216[6]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0007443

Malpighian tubule morphogenesis

PMID:12648473[7]

TAS: Traceable Author Statement

P

complete

GO:0007444

imaginal disc development

PMID:12648473[7]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007443

Malpighian tubule morphogenesis

PMID:9927461[11]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0007447

imaginal disc pattern formation

PMID:11369216[6]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0007444

imaginal disc development

PMID:10934021[37]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0007455

eye-antennal disc morphogenesis

PMID:16963016[38]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0007444

imaginal disc development

PMID:12648473[7]

TAS: Traceable Author Statement

P

complete

GO:0007458

progression of morphogenetic furrow involved in compound eye morphogenesis

PMID:14616073[3]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007455

eye-antennal disc morphogenesis

PMID:16963016[38]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0007469

antennal development

PMID:11875444[39]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0007458

progression of morphogenetic furrow involved in compound eye morphogenesis

PMID:14616073[3]

TAS: Traceable Author Statement

P

complete

GO:0007472

wing disc morphogenesis

PMID:12930782[40]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0007469

antennal development

PMID:11875444[39]

NAS: Non-traceable Author Statement

P

complete

GO:0007473

wing disc proximal/distal pattern formation

PMID:12717815[41]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007472

wing disc morphogenesis

PMID:12930782[40]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0007474

imaginal disc-derived wing vein specification

PMID:12648473[7]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007473

wing disc proximal/distal pattern formation

PMID:12717815[41]

TAS: Traceable Author Statement

P

complete

GO:0007476

imaginal disc-derived wing morphogenesis

PMID:10995384[42]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0007474

imaginal disc-derived wing vein specification

PMID:12648473[7]

TAS: Traceable Author Statement

P

complete

GO:0007476

imaginal disc-derived wing morphogenesis

PMID:11875444[39]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0007476

imaginal disc-derived wing morphogenesis

PMID:10995384[42]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0007476

imaginal disc-derived wing morphogenesis

PMID:12930782[40]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0007476

imaginal disc-derived wing morphogenesis

PMID:11875444[39]

NAS: Non-traceable Author Statement

P

complete

GO:0007476

imaginal disc-derived wing morphogenesis

PMID:14536058[5]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0007476

imaginal disc-derived wing morphogenesis

PMID:12930782[40]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0007476

imaginal disc-derived wing morphogenesis

PMID:16648592[43]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0007476

imaginal disc-derived wing morphogenesis

PMID:14536058[5]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0007477

notum development

PMID:10995384[42]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0007476

imaginal disc-derived wing morphogenesis

PMID:16648592[43]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0007479

leg disc proximal/distal pattern formation

PMID:12181552[44]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007477

notum development

PMID:10995384[42]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0007479

leg disc proximal/distal pattern formation

PMID:12181568[45]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0007479

leg disc proximal/distal pattern formation

PMID:12181552[44]

TAS: Traceable Author Statement

P

complete

GO:0007479

leg disc proximal/distal pattern formation

PMID:12648473[7]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007479

leg disc proximal/distal pattern formation

PMID:12181568[45]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0007482

haltere development

PMID:16815386[46]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0007479

leg disc proximal/distal pattern formation

PMID:12648473[7]

TAS: Traceable Author Statement

P

complete

GO:0008071

maternal determination of dorsal/ventral axis, ovarian follicular epithelium, soma encoded

PMID:3107840[47]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0007482

haltere development

PMID:16815386[46]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0008284

positive regulation of cell proliferation

PMID:19141677[48]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0008071

maternal determination of dorsal/ventral axis, ovarian follicular epithelium, soma encoded

PMID:3107840[47]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0008284

positive regulation of cell proliferation

PMID:21176204[49]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0008284

positive regulation of cell proliferation

PMID:19141677[48]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0008340

determination of adult lifespan

PMID:21516106[50]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0008284

positive regulation of cell proliferation

PMID:21176204[49]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0008355

olfactory learning

PMID:23512935[51]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0008406

gonad development

PMID:21377458[52]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0008406

gonad development

PMID:21377458[52]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0008586

imaginal disc-derived wing vein morphogenesis

PMID:15766758[53]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0008586

imaginal disc-derived wing vein morphogenesis

PMID:15766758[53]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0008586

imaginal disc-derived wing vein morphogenesis

PMID:9631645[8]

TAS: Traceable Author Statement

P

complete

GO:0008586

imaginal disc-derived wing vein morphogenesis

PMID:23549788[54]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0009880

embryonic pattern specification

PMID:12648473[7]

TAS: Traceable Author Statement

P

complete

GO:0008586

imaginal disc-derived wing vein morphogenesis

PMID:9631645[8]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0009880

embryonic pattern specification

PMID:17898168[55]

IGI: Inferred from Genetic Interaction

FB:FBgn0262656

P

complete

GO:0009792

embryo development ending in birth or egg hatching

PMID:8070664[4]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0009952

anterior/posterior pattern formation

PMID:9988212[56]

TAS: Traceable Author Statement

P

complete

GO:0009880

embryonic pattern specification

PMID:12648473[7]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0009953

dorsal/ventral pattern formation

PMID:12648473[7]

TAS: Traceable Author Statement

P

complete

GO:0009880

embryonic pattern specification

PMID:17898168[55]

IGI: Inferred from Genetic Interaction

FB:FBgn0262656

P

Seeded From UniProt

complete

GO:0016020

membrane

GO_REF:0000002

IEA: Inferred from Electronic Annotation

InterPro:IPR000494

C

complete

GO:0009952

anterior/posterior pattern specification

PMID:9988212[56]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0016020

membrane

GO_REF:0000002

IEA: Inferred from Electronic Annotation

InterPro:IPR006211

C

complete

GO:0009953

dorsal/ventral pattern formation

PMID:12648473[7]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0016020

membrane

GO_REF:0000004

IEA: Inferred from Electronic Annotation

SP_KW:KW-0472

C

complete

GO:0016020

membrane

GO_REF:0000002

IEA: Inferred from Electronic Annotation

InterPro:IPR006211

C

Seeded From UniProt

complete

GO:0016020

membrane

GO_REF:0000023

IEA: Inferred from Electronic Annotation

SP_SL:SL-0162

C

complete

GO:0016020

membrane

GO_REF:0000037

IEA: Inferred from Electronic Annotation

UniProtKB-KW:KW-0472

C

Seeded From UniProt

complete

GO:0016021

integral to membrane

GO_REF:0000004

IEA: Inferred from Electronic Annotation

SP_KW:KW-0812

C

complete

GO:0016020

membrane

GO_REF:0000039

IEA: Inferred from Electronic Annotation

UniProtKB-SubCell:SL-0162

C

Seeded From UniProt

complete

GO:0016203

muscle attachment

PMID:12648473[7]

TAS: Traceable Author Statement

P

complete

GO:0016021

integral component of membrane

GO_REF:0000037

IEA: Inferred from Electronic Annotation

UniProtKB-KW:KW-0812

C

Seeded From UniProt

complete

GO:0016301

kinase activity

GO_REF:0000004

IEA: Inferred from Electronic Annotation

SP_KW:KW-0418

F

complete

GO:0016203

muscle attachment

PMID:12648473[7]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0016310

phosphorylation

GO_REF:0000004

IEA: Inferred from Electronic Annotation

SP_KW:KW-0418

P

complete

GO:0016301

kinase activity

GO_REF:0000037

IEA: Inferred from Electronic Annotation

UniProtKB-KW:KW-0418

F

Seeded From UniProt

complete

GO:0016318

ommatidial rotation

PMID:14507782[57]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0016310

phosphorylation

GO_REF:0000037

IEA: Inferred from Electronic Annotation

UniProtKB-KW:KW-0418

P

Seeded From UniProt

complete

GO:0016318

ommatidial rotation

PMID:14507785[58]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0016318

ommatidial rotation

PMID:14507782[57]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0016330

second mitotic wave involved in compound eye morphogenesis

PMID:11257224[59]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0016318

ommatidial rotation

PMID:14507785[58]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0016330

second mitotic wave involved in compound eye morphogenesis

PMID:11735386[9]

TAS: Traceable Author Statement

P

complete

GO:0016330

second mitotic wave involved in compound eye morphogenesis

PMID:11257224[59]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0016330

second mitotic wave involved in compound eye morphogenesis

PMID:12648473[7]

TAS: Traceable Author Statement

P

complete

GO:0016330

second mitotic wave involved in compound eye morphogenesis

PMID:11735386[9]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0016333

morphogenesis of follicular epithelium

PMID:9504923[60]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0016330

second mitotic wave involved in compound eye morphogenesis

PMID:12648473[7]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0016337

cell-cell adhesion

PMID:16831830[61]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0016333

morphogenesis of follicular epithelium

PMID:9504923[60]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0016740

transferase activity

GO_REF:0000004

IEA: Inferred from Electronic Annotation

SP_KW:KW-0808

F

complete

GO:0016772

transferase activity, transferring phosphorus-containing groups

GO_REF:0000002

IEA: Inferred from Electronic Annotation

InterPro:IPR011009

F

complete

GO:0016337

single organismal cell-cell adhesion

PMID:16831830[61]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0022008

neurogenesis

PMID:17898168[55]

IGI: Inferred from Genetic Interaction

FB:FBgn0262656

P

complete

GO:0016740

transferase activity

GO_REF:0000037

IEA: Inferred from Electronic Annotation

UniProtKB-KW:KW-0808

F

Seeded From UniProt

complete

GO:0030031

cell projection assembly

PMID:12198500[62]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0018108

peptidyl-tyrosine phosphorylation

GO_REF:0000002

IEA: Inferred from Electronic Annotation

InterPro:IPR006211

P

Seeded From UniProt

complete

GO:0030381

chorion-containing eggshell pattern formation

PMID:11606538[63]

IGI: Inferred from Genetic Interaction

FB:FBgn0003205

P

complete

GO:0018108

peptidyl-tyrosine phosphorylation

GO_REF:0000002

IEA: Inferred from Electronic Annotation

InterPro:IPR020635

P

Seeded From UniProt

complete

GO:0030381

chorion-containing eggshell pattern formation

PMID:12648473[7]

TAS: Traceable Author Statement

P

complete

GO:0018108

peptidyl-tyrosine phosphorylation

GO_REF:0000003

IEA: Inferred from Electronic Annotation

EC:2.7.10.1

P

Seeded From UniProt

complete

GO:0030718

germ-line stem cell maintenance

PMID:16399083[64]

IGI: Inferred from Genetic Interaction

FB:FBgn0021873

P

complete

GO:0018108

peptidyl-tyrosine phosphorylation

GO_REF:0000037

IEA: Inferred from Electronic Annotation

UniProtKB-KW:KW-0829

P

Seeded From UniProt

complete

GO:0035088

establishment or maintenance of apical/basal cell polarity

PMID:16908845[27]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0018108

peptidyl-tyrosine phosphorylation

PMID:10908587[13]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0035160

maintenance of epithelial integrity, open tracheal system

PMID:16831830[61]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0022008

neurogenesis

PMID:17898168[55]

IGI: Inferred from Genetic Interaction

FB:FBgn0262656

P

Seeded From UniProt

complete

GO:0035202

tracheal pit formation in open tracheal system

PMID:12791296[36]

TAS: Traceable Author Statement

P

complete

GO:0030031

cell projection assembly

PMID:12198500[62]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0035225

determination of genital disc primordium

PMID:15893978[65]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0030381

chorion-containing eggshell pattern formation

PMID:11606538[63]

IGI: Inferred from Genetic Interaction

FB:FBgn0003205

P

Seeded From UniProt

complete

GO:0035277

spiracle morphogenesis, open tracheal system

PMID:15930099[30]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0030381

chorion-containing eggshell pattern formation

PMID:12648473[7]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0035309

wing and notum subfield formation

PMID:10860999[66]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0030718

germ-line stem cell maintenance

PMID:16399083[64]

IGI: Inferred from Genetic Interaction

FB:FBgn0265778

P

Seeded From UniProt

complete

GO:0035310

notum cell fate specification

PMID:10995384[42]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0035088

establishment or maintenance of apical/basal cell polarity

PMID:16908845[27]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0042676

compound eye cone cell fate commitment

PMID:12419199[67]

TAS: Traceable Author Statement

P

complete

GO:0035160

maintenance of epithelial integrity, open tracheal system

PMID:16831830[61]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0042676

compound eye cone cell fate commitment

PMID:12648473[7]

TAS: Traceable Author Statement

P

complete

GO:0035202

tracheal pit formation in open tracheal system

PMID:12791296[36]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0042694

muscle cell fate specification

PMID:12648473[7]

TAS: Traceable Author Statement

P

complete

GO:0035225

determination of genital disc primordium

PMID:15893978[65]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0043066

negative regulation of apoptosis

PMID:17055987[68]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0035277

spiracle morphogenesis, open tracheal system

PMID:15930099[30]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0045466

R7 cell differentiation

PMID:14505358[69]

TAS: Traceable Author Statement

P

complete

GO:0035309

wing and notum subfield formation

PMID:10860999[66]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0045468

regulation of R8 cell spacing in compound eye

PMID:11880339[70]

NAS: Non-traceable Author Statement

P

complete

GO:0035310

notum cell fate specification

PMID:10995384[42]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0045468

regulation of R8 cell spacing in compound eye

PMID:12648473[7]

TAS: Traceable Author Statement

P

complete

GO:0042676

compound eye cone cell fate commitment

PMID:12419199[67]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0045610

regulation of hemocyte differentiation

PMID:15381778[71]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0042676

compound eye cone cell fate commitment

PMID:12648473[7]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0045749

negative regulation of S phase of mitotic cell cycle

PMID:15809036[72]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0042694

muscle cell fate specification

PMID:12648473[7]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0046673

negative regulation of compound eye retinal cell programmed cell death

PMID:12547518[73]

TAS: Traceable Author Statement

P

complete

GO:0043066

negative regulation of apoptotic process

PMID:11832236[24]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0046673

negative regulation of compound eye retinal cell programmed cell death

PMID:15511643[74]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0043066

negative regulation of apoptotic process

PMID:17055987[68]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0046843

dorsal appendage formation

PMID:17008069[75]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0043066

negative regulation of apoptotic process

PMID:23579691[32]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0046845

branched duct epithelial cell fate determination, open tracheal system

PMID:10684581[34]

TAS: Traceable Author Statement

P

complete

GO:0045165

cell fate commitment

PMID:11369216[6]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0046845

branched duct epithelial cell fate determination, open tracheal system

PMID:11063940[35]

TAS: Traceable Author Statement

P

complete

GO:0045466

R7 cell differentiation

PMID:14505358[69]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0048139

female germ-line cyst encapsulation

PMID:12648473[7]

TAS: Traceable Author Statement

P

complete

GO:0045468

regulation of R8 cell spacing in compound eye

PMID:11880339[70]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0048140

male germ-line cyst encapsulation

PMID:12648473[7]

TAS: Traceable Author Statement

P

complete

GO:0045468

regulation of R8 cell spacing in compound eye

PMID:12648473[7]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0048149

behavioral response to ethanol

PMID:19464045[76]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0045610

regulation of hemocyte differentiation

PMID:15381778[71]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0048546

digestive tract morphogenesis

PMID:21176204[49]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0046673

negative regulation of compound eye retinal cell programmed cell death

PMID:12547518[73]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0048749

compound eye development

PMID:11301250[77]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0046673

negative regulation of compound eye retinal cell programmed cell death

PMID:15511643[74]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0048749

compound eye development

PMID:1634999[78]

IMP: Inferred from Mutant Phenotype

P

complete

GO:0046843

dorsal appendage formation

PMID:17008069[75]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0046845

branched duct epithelial cell fate determination, open tracheal system

PMID:10684581[34]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0046845

branched duct epithelial cell fate determination, open tracheal system

PMID:11063940[35]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0048139

female germ-line cyst encapsulation

PMID:12648473[7]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0048140

male germ-line cyst encapsulation

PMID:12648473[7]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0048149

behavioral response to ethanol

PMID:19464045[76]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0048477

oogenesis

PMID:11369216[6]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0048546

digestive tract morphogenesis

PMID:21176204[49]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0048749

compound eye development

PMID:11301250[77]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0048749

compound eye development

PMID:1634999[78]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0048865

stem cell fate commitment

PMID:20463031[79]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0061331

epithelial cell proliferation involved in Malpighian tubule morphogenesis

PMID:11861476[80]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0061331

epithelial cell proliferation involved in Malpighian tubule morphogenesis

PMID:9637680[81]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0090303

positive regulation of wound healing

PMID:22140578[82]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:2000134

negative regulation of G1/S transition of mitotic cell cycle

PMID:15809036[72]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:2001234

negative regulation of apoptotic signaling pathway

PMID:9814703[83]

IGI: Inferred from Genetic Interaction

FB:FBgn0011706

P

Seeded From UniProt

complete

colocalizes_with

GO:0035230

cytoneme

PMID:21493861[84]

IDA: Inferred from Direct Assay

C

Seeded From UniProt

complete

Notes

References

See Help:References for how to manage references in GONUTS.

  1. Wang, PY & Pai, LM (2011) D-Cbl binding to Drk leads to dose-dependent down-regulation of EGFR signaling and increases receptor-ligand endocytosis. PLoS ONE 6 e17097 PubMed GONUTS page
  2. 2.0 2.1 Armaghany, T et al. (2012) Genetic alterations in colorectal cancer. Gastrointest Cancer Res 5 19-27 PubMed GONUTS page
  3. 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 Lee, LA & Orr-Weaver, TL (2003) Regulation of cell cycles in Drosophila development: intrinsic and extrinsic cues. Annu. Rev. Genet. 37 545-78 PubMed GONUTS page
  4. 4.0 4.1 Clifford, R & Schüpbach, T (1994) Molecular analysis of the Drosophila EGF receptor homolog reveals that several genetically defined classes of alleles cluster in subdomains of the receptor protein. Genetics 137 531-50 PubMed GONUTS page
  5. 5.0 5.1 5.2 5.3 Weber, U et al. (2003) Phospholipid membrane composition affects EGF receptor and Notch signaling through effects on endocytosis during Drosophila development. Dev. Cell 5 559-70 PubMed GONUTS page
  6. 6.0 6.1 6.2 6.3 6.4 Bogdan, S & Klämbt, C (2001) Epidermal growth factor receptor signaling. Curr. Biol. 11 R292-5 PubMed GONUTS page
  7. 7.00 7.01 7.02 7.03 7.04 7.05 7.06 7.07 7.08 7.09 7.10 7.11 7.12 7.13 7.14 7.15 7.16 7.17 7.18 7.19 7.20 7.21 7.22 7.23 7.24 7.25 7.26 7.27 7.28 7.29 7.30 7.31 7.32 7.33 7.34 7.35 7.36 7.37 7.38 7.39 7.40 7.41 7.42 7.43 7.44 7.45 Shilo, BZ (2003) Signaling by the Drosophila epidermal growth factor receptor pathway during development. Exp. Cell Res. 284 140-9 PubMed GONUTS page
  8. 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 Bier, E (1998) Localized activation of RTK/MAPK pathways during Drosophila development. Bioessays 20 189-94 PubMed GONUTS page
  9. 9.0 9.1 9.2 9.3 Baker, NE (2001) Cell proliferation, survival, and death in the Drosophila eye. Semin. Cell Dev. Biol. 12 499-507 PubMed GONUTS page
  10. 10.0 10.1 Li, X & Carthew, RW (2005) A microRNA mediates EGF receptor signaling and promotes photoreceptor differentiation in the Drosophila eye. Cell 123 1267-77 PubMed GONUTS page
  11. 11.0 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 Liu, X et al. (1999) Identification of genes controlling malpighian tubule and other epithelial morphogenesis in Drosophila melanogaster. Genetics 151 685-95 PubMed GONUTS page
  12. 12.0 12.1 Yu, L et al. (2010) Affecting Rhomboid-3 function causes a dilated heart in adult Drosophila. PLoS Genet. 6 e1000969 PubMed GONUTS page
  13. 13.0 13.1 13.2 13.3 13.4 Morrison, DK et al. (2000) Protein kinases and phosphatases in the Drosophila genome. J. Cell Biol. 150 F57-62 PubMed GONUTS page
  14. 14.0 14.1 López-Schier, H (2003) The polarisation of the anteroposterior axis in Drosophila. Bioessays 25 781-91 PubMed GONUTS page
  15. Livneh, E et al. (1985) The Drosophila EGF receptor gene homolog: conservation of both hormone binding and kinase domains. Cell 40 599-607 PubMed GONUTS page
  16. 16.0 16.1 16.2 16.3 16.4 16.5 Jékely, G et al. (2005) Regulators of endocytosis maintain localized receptor tyrosine kinase signaling in guided migration. Dev. Cell 9 197-207 PubMed GONUTS page
  17. Alvarado, D et al. (2010) Structural basis for negative cooperativity in growth factor binding to an EGF receptor. Cell 142 568-79 PubMed GONUTS page
  18. Giot, L et al. (2003) A protein interaction map of Drosophila melanogaster. Science 302 1727-36 PubMed GONUTS page
  19. Özkan, E et al. (2013) An extracellular interactome of immunoglobulin and LRR proteins reveals receptor-ligand networks. Cell 154 228-39 PubMed GONUTS page
  20. Hime, GR et al. (1997) D-Cbl, the Drosophila homologue of the c-Cbl proto-oncogene, interacts with the Drosophila EGF receptor in vivo, despite lacking C-terminal adaptor binding sites. Oncogene 14 2709-19 PubMed GONUTS page
  21. Tan, DJ et al. (2009) Mapping organelle proteins and protein complexes in Drosophila melanogaster. J. Proteome Res. 8 2667-78 PubMed GONUTS page
  22. 22.0 22.1 22.2 22.3 Schweitzer, R & Shilo, BZ (1997) A thousand and one roles for the Drosophila EGF receptor. Trends Genet. 13 191-6 PubMed GONUTS page
  23. 23.0 23.1 Duchek, P & Rørth, P (2001) Guidance of cell migration by EGF receptor signaling during Drosophila oogenesis. Science 291 131-3 PubMed GONUTS page
  24. 24.0 24.1 White, K (2002) Signaling survival: how axons rescue their glia. Dev. Cell 2 128-30 PubMed GONUTS page
  25. 25.0 25.1 Ribeiro, C et al. (2003) Signaling systems, guided cell migration, and organogenesis: insights from genetic studies in Drosophila. Dev. Biol. 260 1-8 PubMed GONUTS page
  26. 26.0 26.1 McDonald, JA et al. (2006) Multiple EGFR ligands participate in guiding migrating border cells. Dev. Biol. 296 94-103 PubMed GONUTS page
  27. 27.0 27.1 27.2 27.3 Poulton, JS & Deng, WM (2006) Dystroglycan down-regulation links EGF receptor signaling and anterior-posterior polarity formation in the Drosophila oocyte. Proc. Natl. Acad. Sci. U.S.A. 103 12775-80 PubMed GONUTS page
  28. 28.0 28.1 28.2 28.3 Cooperstock, RL & Lipshitz, HD (1997) Control of mRNA stability and translation during Drosophila development. Semin. Cell Dev. Biol. 8 541-9 PubMed GONUTS page
  29. 29.0 29.1 Martín-Blanco, E (2000) p38 MAPK signalling cascades: ancient roles and new functions. Bioessays 22 637-45 PubMed GONUTS page
  30. 30.0 30.1 30.2 30.3 Merabet, S et al. (2005) Hox-controlled reorganisation of intrasegmental patterning cues underlies Drosophila posterior spiracle organogenesis. Development 132 3093-102 PubMed GONUTS page
  31. 31.0 31.1 Goldman-Levi, R et al. (1996) Cellular pathways acting along the germband and in the amnioserosa may participate in germband retraction of the Drosophila melanogaster embryo. Int. J. Dev. Biol. 40 1043-51 PubMed GONUTS page
  32. 32.0 32.1 Shen, W et al. (2013) Modulation of morphogenesis by Egfr during dorsal closure in Drosophila. PLoS ONE 8 e60180 PubMed GONUTS page
  33. 33.0 33.1 Sepp, KJ & Auld, VJ (2003) Reciprocal interactions between neurons and glia are required for Drosophila peripheral nervous system development. J. Neurosci. 23 8221-30 PubMed GONUTS page
  34. 34.0 34.1 34.2 34.3 Zelzer, E & Shilo, BZ (2000) Cell fate choices in Drosophila tracheal morphogenesis. Bioessays 22 219-26 PubMed GONUTS page
  35. 35.0 35.1 35.2 35.3 Affolter, M & Shilo, BZ (2000) Genetic control of branching morphogenesis during Drosophila tracheal development. Curr. Opin. Cell Biol. 12 731-5 PubMed GONUTS page
  36. 36.0 36.1 36.2 36.3 Uv, A et al. (2003) Drosophila tracheal morphogenesis: intricate cellular solutions to basic plumbing problems. Trends Cell Biol. 13 301-9 PubMed GONUTS page
  37. 37.0 37.1 Kubota, K et al. (2000) EGF receptor attenuates Dpp signaling and helps to distinguish the wing and leg cell fates in Drosophila. Development 127 3769-76 PubMed GONUTS page
  38. 38.0 38.1 Brown, KE et al. (2006) Epithelial cell adhesion in the developing Drosophila retina is regulated by Atonal and the EGF receptor pathway. Dev. Biol. 300 710-21 PubMed GONUTS page
  39. 39.0 39.1 39.2 39.3 Curtiss, J et al. (2002) Selector and signalling molecules cooperate in organ patterning. Nat. Cell Biol. 4 E48-51 PubMed GONUTS page
  40. 40.0 40.1 40.2 40.3 Pallavi, SK & Shashidhara, LS (2003) Egfr/Ras pathway mediates interactions between peripodial and disc proper cells in Drosophila wing discs. Development 130 4931-41 PubMed GONUTS page
  41. 41.0 41.1 De Celis, JF (2003) Pattern formation in the Drosophila wing: The development of the veins. Bioessays 25 443-51 PubMed GONUTS page
  42. 42.0 42.1 42.2 42.3 42.4 42.5 Wang, SH et al. (2000) Dual role for Drosophila epidermal growth factor receptor signaling in early wing disc development. Genes Dev. 14 2271-6 PubMed GONUTS page
  43. 43.0 43.1 Dworkin, I & Gibson, G (2006) Epidermal growth factor receptor and transforming growth factor-beta signaling contributes to variation for wing shape in Drosophila melanogaster. Genetics 173 1417-31 PubMed GONUTS page
  44. 44.0 44.1 Mann, RS & Casares, F (2002) Developmental biology: signalling legacies. Nature 418 737-9 PubMed GONUTS page
  45. 45.0 45.1 Campbell, G (2002) Distalization of the Drosophila leg by graded EGF-receptor activity. Nature 418 781-5 PubMed GONUTS page
  46. 46.0 46.1 Pallavi, SK et al. (2006) Negative regulation of Egfr/Ras pathway by Ultrabithorax during haltere development in Drosophila. Dev. Biol. 296 340-52 PubMed GONUTS page
  47. 47.0 47.1 Schüpbach, T (1987) Germ line and soma cooperate during oogenesis to establish the dorsoventral pattern of egg shell and embryo in Drosophila melanogaster. Cell 49 699-707 PubMed GONUTS page
  48. 48.0 48.1 Jiang, H & Edgar, BA (2009) EGFR signaling regulates the proliferation of Drosophila adult midgut progenitors. Development 136 483-93 PubMed GONUTS page
  49. 49.0 49.1 49.2 49.3 Buchon, N et al. (2010) Drosophila EGFR pathway coordinates stem cell proliferation and gut remodeling following infection. BMC Biol. 8 152 PubMed GONUTS page
  50. Kamakura, M (2011) Royalactin induces queen differentiation in honeybees. Nature 473 478-83 PubMed GONUTS page
  51. Rahn, T et al. (2013) EGFR signaling in the brain is necessary for olfactory learning in Drosophila larvae. Learn. Mem. 20 194-200 PubMed GONUTS page
  52. 52.0 52.1 Weyers, JJ et al. (2011) A genetic screen for mutations affecting gonad formation in Drosophila reveals a role for the slit/robo pathway. Dev. Biol. 353 217-28 PubMed GONUTS page
  53. 53.0 53.1 Ralston, A & Blair, SS (2005) Long-range Dpp signaling is regulated to restrict BMP signaling to a crossvein competent zone. Dev. Biol. 280 187-200 PubMed GONUTS page
  54. Hahn, I et al. (2013) The Drosophila Arf GEF Steppke controls MAPK activation in EGFR signaling. J. Cell. Sci. 126 2470-9 PubMed GONUTS page
  55. 55.0 55.1 55.2 55.3 Orian, A et al. (2007) A Myc-Groucho complex integrates EGF and Notch signaling to regulate neural development. Proc. Natl. Acad. Sci. U.S.A. 104 15771-6 PubMed GONUTS page
  56. 56.0 56.1 Wylie, C (1999) Germ cells. Cell 96 165-74 PubMed GONUTS page
  57. 57.0 57.1 Gaengel, K & Mlodzik, M (2003) Egfr signaling regulates ommatidial rotation and cell motility in the Drosophila eye via MAPK/Pnt signaling and the Ras effector Canoe/AF6. Development 130 5413-23 PubMed GONUTS page
  58. 58.0 58.1 Brown, KE & Freeman, M (2003) Egfr signalling defines a protective function for ommatidial orientation in the Drosophila eye. Development 130 5401-12 PubMed GONUTS page
  59. 59.0 59.1 Baker, NE & Yu, SY (2001) The EGF receptor defines domains of cell cycle progression and survival to regulate cell number in the developing Drosophila eye. Cell 104 699-708 PubMed GONUTS page
  60. 60.0 60.1 Rotoli, D et al. (1998) hold up is required for establishment of oocyte positioning, follicle cell fate and egg polarity and cooperates with Egfr during Drosophila oogenesis. Genetics 148 767-73 PubMed GONUTS page
  61. 61.0 61.1 61.2 61.3 Cela, C & Llimargas, M (2006) Egfr is essential for maintaining epithelial integrity during tracheal remodelling in Drosophila. Development 133 3115-25 PubMed GONUTS page
  62. 62.0 62.1 Fulga, TA & Rørth, P (2002) Invasive cell migration is initiated by guided growth of long cellular extensions. Nat. Cell Biol. 4 715-9 PubMed GONUTS page
  63. 63.0 63.1 Schnorr, JD et al. (2001) Ras1 interacts with multiple new signaling and cytoskeletal loci in Drosophila eggshell patterning and morphogenesis. Genetics 159 609-22 PubMed GONUTS page
  64. 64.0 64.1 Wang, H et al. (2006) Rap-GEF signaling controls stem cell anchoring to their niche through regulating DE-cadherin-mediated cell adhesion in the Drosophila testis. Dev. Cell 10 117-26 PubMed GONUTS page
  65. 65.0 65.1 Chen, EH et al. (2005) Allocation and specification of the genital disc precursor cells in Drosophila. Dev. Biol. 281 270-85 PubMed GONUTS page
  66. 66.0 66.1 Baonza, A et al. (2000) DER signaling restricts the boundaries of the wing field during Drosophila development. Proc. Natl. Acad. Sci. U.S.A. 97 7331-5 PubMed GONUTS page
  67. 67.0 67.1 Lai, EC (2002) Developmental signaling: shrimp and strawberries help flies make cones. Curr. Biol. 12 R722-4 PubMed GONUTS page
  68. 68.0 68.1 Parker, J (2006) Control of compartment size by an EGF ligand from neighboring cells. Curr. Biol. 16 2058-65 PubMed GONUTS page
  69. 69.0 69.1 Cook, T (2003) Cell diversity in the retina: more than meets the eye. Bioessays 25 921-5 PubMed GONUTS page
  70. 70.0 70.1 Frankfort, BJ & Mardon, G (2002) R8 development in the Drosophila eye: a paradigm for neural selection and differentiation. Development 129 1295-306 PubMed GONUTS page
  71. 71.0 71.1 Zettervall, CJ et al. (2004) A directed screen for genes involved in Drosophila blood cell activation. Proc. Natl. Acad. Sci. U.S.A. 101 14192-7 PubMed GONUTS page
  72. 72.0 72.1 Firth, LC & Baker, NE (2005) Extracellular signals responsible for spatially regulated proliferation in the differentiating Drosophila eye. Dev. Cell 8 541-51 PubMed GONUTS page
  73. 73.0 73.1 Brachmann, CB & Cagan, RL (2003) Patterning the fly eye: the role of apoptosis. Trends Genet. 19 91-6 PubMed GONUTS page
  74. 74.0 74.1 Cordero, J et al. (2004) A role for wingless in an early pupal cell death event that contributes to patterning the Drosophila eye. Mech. Dev. 121 1523-30 PubMed GONUTS page
  75. 75.0 75.1 Wahlström, G et al. (2006) Drosophila alpha-actinin in ovarian follicle cells is regulated by EGFR and Dpp signalling and required for cytoskeletal remodelling. Mech. Dev. 123 801-18 PubMed GONUTS page
  76. 76.0 76.1 Corl, AB et al. (2009) Happyhour, a Ste20 family kinase, implicates EGFR signaling in ethanol-induced behaviors. Cell 137 949-60 PubMed GONUTS page
  77. 77.0 77.1 Baonza, A et al. (2001) A primary role for the epidermal growth factor receptor in ommatidial spacing in the Drosophila eye. Curr. Biol. 11 396-404 PubMed GONUTS page
  78. 78.0 78.1 Baker, NE et al. (1992) Mutations on the second chromosome affecting the Drosophila eye. J. Neurogenet. 8 85-100 PubMed GONUTS page
  79. Figeac, N et al. (2010) Drosophila adult muscle precursors form a network of interconnected cells and are specified by the rhomboid-triggered EGF pathway. Development 137 1965-73 PubMed GONUTS page
  80. Sudarsan, V et al. (2002) A genetic hierarchy establishes mitogenic signalling and mitotic competence in the renal tubules of Drosophila. Development 129 935-44 PubMed GONUTS page
  81. Kerber, B et al. (1998) Seven-up, the Drosophila homolog of the COUP-TF orphan receptors, controls cell proliferation in the insect kidney. Genes Dev. 12 1781-6 PubMed GONUTS page
  82. Geiger, JA et al. (2011) Hole-in-one mutant phenotypes link EGFR/ERK signaling to epithelial tissue repair in Drosophila. PLoS ONE 6 e28349 PubMed GONUTS page
  83. Kurada, P & White, K (1998) Ras promotes cell survival in Drosophila by downregulating hid expression. Cell 95 319-29 PubMed GONUTS page
  84. Roy, S et al. (2011) Specificity of Drosophila cytonemes for distinct signaling pathways. Science 332 354-8 PubMed GONUTS page