GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

YEAST:RAP1

From GONUTS
Jump to: navigation, search
Species (Taxon ID) Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast). (559292)
Gene Name(s) RAP1 (synonyms: GRF1, TUF1)
Protein Name(s) DNA-binding protein RAP1

Repressor/activator site-binding protein SBF-E TUF

External Links
UniProt P11938
EMBL M18068
X78898
Z71492
BK006947
PIR S50714
RefSeq NP_014183.1
PDB 1IGN
2L42
3CZ6
3OWT
3UKG
4BJ5
4BJ6
4BJT
4GFB
PDBsum 1IGN
2L42
3CZ6
3OWT
3UKG
4BJ5
4BJ6
4BJT
4GFB
DisProt DP00020
ProteinModelPortal P11938
SMR P11938
BioGrid 35620
DIP DIP-851N
IntAct P11938
MINT MINT-551528
STRING 4932.YNL216W
MaxQB P11938
PaxDb P11938
PeptideAtlas P11938
EnsemblFungi [example_ID YNL216W]
GeneID 855505
KEGG sce:YNL216W
CYGD YNL216w
SGD S000005160
eggNOG NOG46211
HOGENOM HOG000115833
InParanoid P11938
KO K09426
OMA IAREFFK
OrthoDB EOG74J9HM
BioCyc YEAST:G3O-33222-MONOMER
EvolutionaryTrace P11938
NextBio 979511
Proteomes UP000002311
Genevestigator P11938
GO GO:0005829
GO:0000228
GO:0000784
GO:0005634
GO:0070187
GO:0000987
GO:0008301
GO:0051880
GO:0031492
GO:0000982
GO:0001076
GO:0001132
GO:0042162
GO:0001094
GO:0030466
GO:0006348
GO:0035390
GO:0071169
GO:0070200
GO:0031936
GO:0000122
GO:0045944
GO:0031848
GO:0072363
GO:0034401
GO:0000723
GO:0010833
GO:0006366
Gene3D 1.10.10.60
3.40.50.10190
InterPro IPR001357
IPR009057
IPR017930
IPR021661
IPR015280
IPR001005
Pfam PF00249
PF09197
PF11626
SMART SM00292
SM00717
SUPFAM SSF46689
SSF52113
PROSITE PS50172
PS51294

Annotations

Qualifier GO ID GO term name Reference ECO ID ECO term name with/from Aspect Extension Notes Status
GO:0071919

G-quadruplex DNA formation

PMID:8194531[1]

ECO:0000314

P

Figure 4B

complete
CACAO 2328

enables

GO:0043565

sequence-specific DNA binding

PMID:19158363[2]

ECO:0007005

high throughput direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0003700

DNA-binding transcription factor activity

PMID:18195009[3]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0003700

DNA-binding transcription factor activity

PMID:20559389[4]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

part_of

GO:0000784

nuclear chromosome, telomeric region

PMID:26399229[5]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0032993

protein-DNA complex

PMID:8620531[6]

ECO:0000315

mutant phenotype evidence used in manual assertion

C

Seeded From UniProt

complete

enables

GO:0003691

double-stranded telomeric DNA binding

PMID:8620531[6]

ECO:0000315

mutant phenotype evidence used in manual assertion

F

Seeded From UniProt

complete

part_of

GO:0000784

nuclear chromosome, telomeric region

PMID:27122604[7]

ECO:0000315

mutant phenotype evidence used in manual assertion

C

adjacent_to:(GO:0034399)

Seeded From UniProt

complete

involved_in

GO:0071919

G-quadruplex DNA formation

PMID:8194531[1]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0000987

proximal promoter sequence-specific DNA binding

PMID:10487921[8]

ECO:0000314

direct assay evidence used in manual assertion

F

has_direct_input:(SGD:S000005904)

Seeded From UniProt

complete

involved_in

GO:0072363

regulation of glycolytic process by positive regulation of transcription from RNA polymerase II promoter

PMID:15300680[9]

ECO:0000316

genetic interaction evidence used in manual assertion

SGD:S000005996

P

Seeded From UniProt

complete

involved_in

GO:0071169

establishment of protein localization to chromatin

PMID:11689698[10]

ECO:0000353

physical interaction evidence used in manual assertion

SGD:S000002635
SGD:S000004434

P

Seeded From UniProt

complete

involved_in

GO:0070200

establishment of protein localization to telomere

PMID:11689698[10]

ECO:0000353

physical interaction evidence used in manual assertion

SGD:S000004434

P

Seeded From UniProt

complete

part_of

GO:0070187

shelterin complex

PMID:23746845[11]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

enables

GO:0051880

G-quadruplex DNA binding

PMID:8194531[1]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0045944

positive regulation of transcription by RNA polymerase II

PMID:2010087[12]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0042162

telomeric DNA binding

PMID:17656141[13]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0042162

telomeric DNA binding

PMID:8510148[14]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0035390

establishment of chromatin silencing at telomere

PMID:12080091[15]

ECO:0000353

physical interaction evidence used in manual assertion

SGD:S000002635

P

Seeded From UniProt

complete

involved_in

GO:0031936

negative regulation of chromatin silencing

PMID:12582242[16]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0031848

protection from non-homologous end joining at telomere

PMID:16096640[17]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0031492

nucleosomal DNA binding

PMID:19782036[18]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0030466

chromatin silencing at silent mating-type cassette

PMID:7958893[19]

ECO:0000316

genetic interaction evidence used in manual assertion

SGD:S000004434

P

Seeded From UniProt

complete

involved_in

GO:0010833

telomere maintenance via telomere lengthening

PMID:9020083[20]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0010833

telomere maintenance via telomere lengthening

PMID:9020083[20]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0008301

DNA binding, bending

PMID:2656680[21]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0006348

chromatin silencing at telomere

PMID:7958893[19]

ECO:0000316

genetic interaction evidence used in manual assertion

SGD:S000004434

P

Seeded From UniProt

complete

part_of

GO:0005829

cytosol

PMID:22932476[22]

ECO:0000314

direct assay evidence used in manual assertion

C

exists_during:(GO:0071456)

Seeded From UniProt

complete

part_of

GO:0005634

nucleus

PMID:22932476[22]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

enables

GO:0017025

TBP-class protein binding

PMID:18195009[3]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0001094

TFIID-class transcription factor complex binding

PMID:17074814[23]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0001085

RNA polymerase II transcription factor binding

PMID:20559389[4]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0000987

proximal promoter sequence-specific DNA binding

PMID:12051841[24]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0000981

DNA-binding transcription factor activity, RNA polymerase II-specific

PMID:1904543[25]

ECO:0000314

direct assay evidence used in manual assertion

F

occurs_at:(SO:0001952)

Seeded From UniProt

complete

part_of

GO:0000784

nuclear chromosome, telomeric region

PMID:9710643[26]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0000784

nuclear chromosome, telomeric region

PMID:16956377[27]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0000723

telomere maintenance

PMID:2237406[28]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0000228

nuclear chromosome

PMID:11455386[29]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0000122

negative regulation of transcription by RNA polymerase II

PMID:2010087[12]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0070187

shelterin complex

PMID:21873635[30]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

PANTHER:PTN001046706
PomBase:SPBC1778.02
SGD:S000005160
UniProtKB:Q9NYB0

C

Seeded From UniProt

complete

enables

GO:0042162

telomeric DNA binding

PMID:21873635[30]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

MGI:MGI:1929871
PANTHER:PTN001046706
SGD:S000005160
UniProtKB:A0A1D8PIK2
UniProtKB:Q9NYB0

F

Seeded From UniProt

complete

involved_in

GO:0010833

telomere maintenance via telomere lengthening

PMID:21873635[30]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

MGI:MGI:1929871
PANTHER:PTN001046706
SGD:S000005160

P

Seeded From UniProt

complete

involved_in

GO:0006355

regulation of transcription, DNA-templated

PMID:21873635[30]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

MGI:MGI:1929871
PANTHER:PTN001046706
PomBase:SPBC1778.02
SGD:S000005160
UniProtKB:Q9NYB0

P

Seeded From UniProt

complete

enables

GO:0003677

DNA binding

PMID:21873635[30]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

MGI:MGI:1929871
PANTHER:PTN001046706
SGD:S000005160
UniProtKB:A0A1D8PIK2
UniProtKB:Q9NYB0

F

Seeded From UniProt

complete

involved_in

GO:0000723

telomere maintenance

PMID:21873635[30]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

MGI:MGI:1929871
PANTHER:PTN001046706
PomBase:SPBC1778.02
SGD:S000005160
UniProtKB:A0A1D8PIK2
UniProtKB:Q9NYB0

P

Seeded From UniProt

complete

enables

GO:0003677

DNA binding

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR009057
InterPro:IPR015280

F

Seeded From UniProt

complete

part_of

GO:0005694

chromosome

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0158

C

Seeded From UniProt

complete

enables

GO:0003677

DNA binding

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0238

F

Seeded From UniProt

complete

part_of

GO:0005634

nucleus

GO_REF:0000037
GO_REF:0000039

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0539
UniProtKB-SubCell:SL-0191

C

Seeded From UniProt

complete

part_of

GO:0000781

chromosome, telomeric region

GO_REF:0000037
GO_REF:0000039

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0779
UniProtKB-SubCell:SL-0276

C

Seeded From UniProt

complete

Notes

References

See Help:References for how to manage references in GONUTS.

  1. 1.0 1.1 1.2 Giraldo, R & Rhodes, D (1994) The yeast telomere-binding protein RAP1 binds to and promotes the formation of DNA quadruplexes in telomeric DNA. EMBO J. 13 2411-20 PubMed GONUTS page
  2. Zhu, C et al. (2009) High-resolution DNA-binding specificity analysis of yeast transcription factors. Genome Res. 19 556-66 PubMed GONUTS page
  3. 3.0 3.1 Bendjennat, M & Weil, PA (2008) The transcriptional repressor activator protein Rap1p is a direct regulator of TATA-binding protein. J. Biol. Chem. 283 8699-710 PubMed GONUTS page
  4. 4.0 4.1 Papai, G et al. (2010) TFIIA and the transactivator Rap1 cooperate to commit TFIID for transcription initiation. Nature 465 956-60 PubMed GONUTS page
  5. Guidi, M et al. (2015) Spatial reorganization of telomeres in long-lived quiescent cells. Genome Biol. 16 206 PubMed GONUTS page
  6. 6.0 6.1 Konig, P et al. (1996) The crystal structure of the DNA-binding domain of yeast RAP1 in complex with telomeric DNA. Cell 85 125-36 PubMed GONUTS page
  7. Laporte, D et al. (2016) Quiescent Saccharomyces cerevisiae forms telomere hyperclusters at the nuclear membrane vicinity through a multifaceted mechanism involving Esc1, the Sir complex, and chromatin condensation. Mol. Biol. Cell 27 1875-84 PubMed GONUTS page
  8. Fujiwara, D et al. (1999) Molecular mechanism of the multiple regulation of the Saccharomyces cerevisiae ATF1 gene encoding alcohol acetyltransferase. Yeast 15 1183-97 PubMed GONUTS page
  9. Mizuno, T et al. (2004) Role of the N-terminal region of Rap1p in the transcriptional activation of glycolytic genes in Saccharomyces cerevisiae. Yeast 21 851-66 PubMed GONUTS page
  10. 10.0 10.1 Moretti, P & Shore, D (2001) Multiple interactions in Sir protein recruitment by Rap1p at silencers and telomeres in yeast. Mol. Cell. Biol. 21 8082-94 PubMed GONUTS page
  11. Shi, T et al. (2013) Rif1 and Rif2 shape telomere function and architecture through multivalent Rap1 interactions. Cell 153 1340-53 PubMed GONUTS page
  12. 12.0 12.1 Kurtz, S & Shore, D (1991) RAP1 protein activates and silences transcription of mating-type genes in yeast. Genes Dev. 5 616-28 PubMed GONUTS page
  13. Sabourin, M et al. (2007) Telomerase and Tel1p preferentially associate with short telomeres in S. cerevisiae. Mol. Cell 27 550-61 PubMed GONUTS page
  14. Gilson, E et al. (1993) Distortion of the DNA double helix by RAP1 at silencers and multiple telomeric binding sites. J. Mol. Biol. 231 293-310 PubMed GONUTS page
  15. Luo, K et al. (2002) Rap1-Sir4 binding independent of other Sir, yKu, or histone interactions initiates the assembly of telomeric heterochromatin in yeast. Genes Dev. 16 1528-39 PubMed GONUTS page
  16. Yu, Q et al. (2003) Rap1p and other transcriptional regulators can function in defining distinct domains of gene expression. Nucleic Acids Res. 31 1224-33 PubMed GONUTS page
  17. Pardo, B & Marcand, S (2005) Rap1 prevents telomere fusions by nonhomologous end joining. EMBO J. 24 3117-27 PubMed GONUTS page
  18. Koerber, RT et al. (2009) Interaction of transcriptional regulators with specific nucleosomes across the Saccharomyces genome. Mol. Cell 35 889-902 PubMed GONUTS page
  19. 19.0 19.1 Moretti, P et al. (1994) Evidence that a complex of SIR proteins interacts with the silencer and telomere-binding protein RAP1. Genes Dev. 8 2257-69 PubMed GONUTS page
  20. 20.0 20.1 Marcand, S et al. (1997) A protein-counting mechanism for telomere length regulation in yeast. Science 275 986-90 PubMed GONUTS page
  21. Vignais, ML & Sentenac, A (1989) Asymmetric DNA bending induced by the yeast multifunctional factor TUF. J. Biol. Chem. 264 8463-6 PubMed GONUTS page
  22. 22.0 22.1 Dastidar, RG et al. (2012) The nuclear localization of SWI/SNF proteins is subjected to oxygen regulation. Cell Biosci 2 30 PubMed GONUTS page
  23. Garbett, KA et al. (2007) Yeast TFIID serves as a coactivator for Rap1p by direct protein-protein interaction. Mol. Cell. Biol. 27 297-311 PubMed GONUTS page
  24. De Sanctis, V et al. (2002) In vivo topography of Rap1p-DNA complex at Saccharomyces cerevisiae TEF2 UAS(RPG) during transcriptional regulation. J. Mol. Biol. 318 333-49 PubMed GONUTS page
  25. Devlin, C et al. (1991) RAP1 is required for BAS1/BAS2- and GCN4-dependent transcription of the yeast HIS4 gene. Mol. Cell. Biol. 11 3642-51 PubMed GONUTS page
  26. Bourns, BD et al. (1998) Sir proteins, Rif proteins, and Cdc13p bind Saccharomyces telomeres in vivo. Mol. Cell. Biol. 18 5600-8 PubMed GONUTS page
  27. Clément, M et al. (2006) The nuclear GTPase Gsp1p can affect proper telomeric function through the Sir4 protein in Saccharomyces cerevisiae. Mol. Microbiol. 62 453-68 PubMed GONUTS page
  28. Lustig, AJ et al. (1990) Involvement of the silencer and UAS binding protein RAP1 in regulation of telomere length. Science 250 549-53 PubMed GONUTS page
  29. Lieb, JD et al. (2001) Promoter-specific binding of Rap1 revealed by genome-wide maps of protein-DNA association. Nat. Genet. 28 327-34 PubMed GONUTS page
  30. 30.0 30.1 30.2 30.3 30.4 30.5 Gaudet, P et al. (2011) Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Brief. Bioinformatics 12 449-62 PubMed GONUTS page