GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

RefGenome Electronic Jamboree 2008-10 NEDD4

From GONUTS
Jump to: navigation, search

See the talk page for tips on editing the tables and for misc. discussion. back to previous page http://gowiki.tamu.edu/wiki/index.php/Category:Refgenome_Electronic_Jamborees

Orthoset

Ortholog set at PPOD

Participants

Name Group Organism(s)/Genome(s) Notes

Rachael Huntley

GOA

Human

UniProtKB:P46934

Susan Tweedie

flyBase

D. melanogaster

FBgn0259174

Ruth Lovering

BHF-UCL

Human

UniProtKB:P46934

Varsha Khodiyar

BHF-UCL

Human

UniProtKB:P46934

Emily Dimmer

GOA

Human

UniProtKB:P46934

Kimberly Van Auken

WormBase

C. elegans

NEDD4 = Y92H12A.2 = WBGene00022358

Julie Park

SGD

S. cerevisiae

NEDD4 = RSP5 = S000000927 (Although this gene is not in the stated orthogroup, the body of literature for RSP5 supports that it is the ortholog of NEDD4)

Alexander Diehl

MGI

Mouse

UniProtKB:P46935

NEDD4

<ejamb> 573c5f77b3a094817c4e1c4a6f9b2c99.260434.M48e666180c35f

NEDD4</ejamb>

[back to top]


Group Organism Gene Qualifier GO ID GO term name Reference(s) Evidence Code with/from Aspect Notes Status

BHF-UCL

Human

P46934

GO:0034644

cellular response to UV

PMID:17996703[1]

IMP: Inferred from Mutant Phenotype

P

complete

BHF-UCL

Human

P46934

GO:0042787

protein ubiquitination during ubiquitin-dependent protein catabolic process

PMID:17996703[1]

IMP: Inferred from Mutant Phenotype

P

complete

BHF-UCL

Human

P46934

GO:0042921

glucocorticoid receptor signaling pathway

PMID:8649367[2]

IDA: Inferred from Direct Assay

P

complete

BHF-UCL

Human

P46934

GO:0050847

progesterone receptor signaling pathway

PMID:8649367[2]

IDA: Inferred from Direct Assay

P

complete

BHF-UCL

Human

P46934

GO:0031175

neurite development

PMID:9990509[3]

IEP: Inferred from Expression Pattern

P

complete

BHF-UCL

Human

P46934

GO:0014068

positive regulation of phosphoinositide 3-kinase cascade

PMID:17218260[4]

IMP: Inferred from Mutant Phenotype

P

complete

BHF-UCL

Human

P46934

GO:0042787

protein ubiquitination during ubiquitin-dependent protein catabolic process

PMID:17218260[4]

IMP: Inferred from Mutant Phenotype

P

complete

BHF-UCL

Human

P46934

GO:0046824

positive regulation of nucleocytoplasmic transport

PMID:17218261[5]

IDA: Inferred from Direct Assay

P

complete

GOA

Human

P46934

GO:0007041

lysosomal transport

PMID:18544533[6]

IDA: Inferred from Direct Assay

P

GOA

Human

P46934

GO:0031623

receptor internalization

PMID:18544533[6]

IDA: Inferred from Direct Assay

P

GOA

Human

P46934

GO:0032801

receptor catabolic process

PMID:18544533[6]

IDA: Inferred from Direct Assay

P

GOA

Human

P46934

GO:0006622

protein targeting to lysosome

PMID:17116753[7]

IDA: Inferred from Direct Assay

P

GOA

Human

P46934

GO:0010766

negative regulation of sodium ion transport

PMID:10642508[8]

IDA: Inferred from Direct Assay

P

complete

BHF-UCL

Human

P46934

GO:0010768

negative regulation of transcription from RNA polymerase II promoter in response to UV-induced DNA damage

PMID:17996703[1]

IMP: Inferred from Mutant Phenotype

P

complete

FlyBase

Drosophila

FBgn0259174

GO:0005737

cytoplasm

PMID:17074801[9]

IDA: Inferred from Direct Assay

C

complete

BHF-UCL

Human

P46934

GO:0004842

ubiquitin-protein ligase activity

PMID:17996703[1]

IDA: Inferred from Direct Assay

F

complete

FlyBase

Drosophila

FBgn0259174

GO:0016567

protein ubiquitination

PMID:17074801[9]

IMP: Inferred from Mutant Phenotype

P

complete

BHF-UCL

Human

P46934

GO:0043130

ubiquitin binding

PMID:17996703[1]

IC: Inferred by Curator

GO:0004842

F

complete

FlyBase

Drosophila

FBgn0259174

GO:0045807

positive regulation of endocytosis

PMID:17074801[9]

IMP: Inferred from Mutant Phenotype

P

Do we need term to indicate endocytosis of a specific protein (other than receptor)?

complete

BHF-UCL

Human

P46934

GO:0005515

protein binding

PMID:9305852[10]

IPI: Inferred from Physical Interaction

Q16621

F

complete

FlyBase

Drosophila

FBgn0259174

GO:0051965

positive regulation of synaptogenesis

PMID:17074801[9]

IMP: Inferred from Mutant Phenotype

P

NTR: reg of neuromuscular synaptogenesis?

complete

BHF-UCL

Human

P46934

GO:0043130

ubiquitin binding

PMID:9990509[3]

IDA: Inferred from Direct Assay

F

complete

BHF-UCL

Human

P46934

GO:0005515

protein binding

PMID:12796489[11]

IPI: Inferred from Physical Interaction

Q9NV92

F

complete

BHF-UCL

Human

P46934

GO:0005515

protein binding

PMID:10642508[8]

IPI: Inferred from Physical Interaction

P37088

F

complete

FlyBase

Drosophila

FBgn0259174

GO:0019904

protein domain specific binding

PMID:16531238[12]

IPI: Inferred from Physical Interaction

FB:FBgn0010105

F

NTR: PY motif binding?

complete

BHF-UCL

Human

P46934

GO:0005515

protein binding

PMID:10642508[8]

IPI: Inferred from Physical Interaction

P51168

F

complete

BHF-UCL

Human

P46934

GO:0005515

protein binding

PMID:10642508[8]

IPI: Inferred from Physical Interaction

P51170

F

complete

BHF-UCL

Human

P46934

GO:0019871

sodium channel inhibitor activity

PMID:10642508[8]

IDA: Inferred from Direct Assay

F

complete

BHF-UCL

Human

P46934

GO:0005515

protein binding

PMID:9990509[3]

IPI: Inferred from Physical Interaction

P68036

F

complete

BHF-UCL

Human

P46934

GO:0005886

plasma membrane

PMID:15126635[13]

IMP: Inferred from Mutant Phenotype

C

complete

GOA

Human

P46934

GO:0031698

beta-2 adrenergic receptor binding

PMID:18544533[6]

IDA: Inferred from Direct Assay

F

complete

GOA

Human

P46934

GO:0019904

protein domain specific binding

PMID:12907594[14]

IPI: Inferred from Physical Interaction

Q969W9

F

complete

BHF-UCL

Human

P46934

GO:0070063

RNA polymerase binding

PMID:17996703[1]

IPI: Inferred from Physical Interaction

P24928

F

complete

BHF-UCL

Human

P46934

GO:0070064

proline-rich region binding

PMID:15126635[13]

IMP: Inferred from Mutant Phenotype

F

complete

GOA

Human

P46934

GO:0070064

proline-rich region binding

PMID:11342538[15]

IPI: Inferred from Physical Interaction

Q15038

F

complete

BHF-UCL

Human

P46934

GO:0005737

cytoplasm

PMID:12796489[11]

IDA: Inferred from Direct Assay

C

complete

BHF-UCL

Human

P46934

GO:0005938

cell cortex

PMID:9990509[3]

IDA: Inferred from Direct Assay

C

complete

BHF-UCL

Human

P46934

GO:0048471

perinuclear region of cytoplasm

PMID:9990509[3]

IDA: Inferred from Direct Assay

C

complete

BHF-UCL

Human

P46934

GO:0000785

chromatin

PMID:17996703[1]

IDA: Inferred from Direct Assay

C

complete

FlyBase

Drosophila

FBgn0259174

GO:0002092

positive regulation of receptor internalization

PMID:15620649[16]

IMP: Inferred from Mutant Phenotype

P

complete

FlyBase

Drosophila

FBgn0259174

GO:0045746

negative regulation of Notch signaling pathway

PMID:15620649[16]

IGI: Inferred from Genetic Interaction

FB:FBgn0004647

P

complete

FlyBase

Drosophila

FBgn0259174

GO:0005938

cell cortex

PMID:15620649[16]

IDA: Inferred from Direct Assay

C

complete

FlyBase

Drosophila

FBgn0259174

GO:0016567

protein ubiquitination

PMID:15620649[16]

IMP: Inferred from Mutant Phenotype

P

complete

DictyBase

Dicty

no ortholog in Dicty

required field missing

FlyBase

Drosophila

FBgn0259174

GO:0019904

protein domain specific binding

PMID:15620649[16]

IPI: Inferred from Physical Interaction

FB:FBgn0004647

F

complete

SGD

S. cerevisiae

RSP5

GO:0004842

ubiquitin-protein ligase activity

PMID:9108033[17]

IDA: Inferred from Direct Assay

F

complete

WormBase

C.elegans

NEDD4 = Y92H12A.2 = WBGene000223358

No experimental annotations available.

required field missing

SGD

S. cerevisiae

RSP5

GO:0035091

phosphoinositide binding

PMID:15078904[18]

IDA: Inferred from Direct Assay

F

complete

SGD

S. cerevisiae

RSP5

GO:0000209

protein polyubiquitination

PMID:9108033[17]

IDA: Inferred from Direct Assay

P

complete

SGD

S. cerevisiae

RSP5

GO:0006513

protein monoubiquitination

PMID:14761940[19]

IGI: Inferred from Genetic Interaction

RVS167

P

complete

SGD

S. cerevisiae

RSP5

GO:0042787

protein ubiquitination during ubiquitin-dependent protein catabolic process

PMID:9614172[20]

IMP: Inferred from Mutant Phenotype

P

complete

SGD

S. cerevisiae

RSP5

GO:0043162

ubiquitin-dependent protein catabolic process via the multivesicular body pathway

PMID:17344478[21]

IMP: Inferred from Mutant Phenotype

P

complete

SGD

S. cerevisiae

RSP5

GO:0043161

proteasomal ubiquitin-dependent protein catabolic process

PMID:15713680[22]

IPI: Inferred from Physical Interaction

HPR1

P

complete

SGD

S. cerevisiae

RSP5

GO:0032511

late endosome to vacuole transport via multivesicular body sorting pathway

PMID:17182849[23]

IMP: Inferred from Mutant Phenotype

P

complete

SGD

S. cerevisiae

RSP5

GO:0032880

regulation of protein localization

PMID:12867034[24]

IMP: Inferred from Mutant Phenotype

P

complete

SGD

S. cerevisiae

RSP5

GO:0048260

positive regulation of receptor-mediated endocytosis

PMID:11179425[25]

IMP: Inferred from Mutant Phenotype

P

complete

SGD

S. cerevisiae

RSP5

GO:0045807

positive regulation of endocytosis

PMID:12654912[26]

IDA: Inferred from Direct Assay

P

complete

SGD

S. cerevisiae

RSP5

GO:0045723

positive regulation of fatty acid biosynthetic process

PMID:11007476[27]

IMP: Inferred from Mutant Phenotype

P

complete

SGD

S. cerevisiae

RSP5

GO:0006333

chromatin assembly or disassembly

PMID:12399376[28]

IMP: Inferred from Mutant Phenotype

P

complete

SGD

S. cerevisiae

RSP5

GO:0034517

ribophagy

PMID:18670191[29]

IGI: Inferred from Genetic Interaction

UBP3

P

complete

SGD

S. cerevisiae

RSP5

GO:0000055

ribosomal large subunit export from nucleus

PMID:14608372[30]

IMP: Inferred from Mutant Phenotype

P

complete

SGD

S. cerevisiae

RSP5

GO:0006409

tRNA export from nucleus

PMID:14608372[30]

IMP: Inferred from Mutant Phenotype

P

complete

SGD

S. cerevisiae

RSP5

GO:0008033

tRNA processing

PMID:14608372[30]

IMP: Inferred from Mutant Phenotype

P

complete

SGD

S. cerevisiae

RSP5

GO:0006364

rRNA processing

PMID:14608372[30]

IMP: Inferred from Mutant Phenotype

P

complete

SGD

S. cerevisiae

RSP5

GO:0034644

cellular response to UV

PMID:10490634[31]

IMP: Inferred from Mutant Phenotype

P

complete

SGD

S. cerevisiae

RSP5

GO:0042493

response to drug

PMID:12163175[32]

IPI: Inferred from Physical Interaction

ROD1

P

complete

SGD

S. cerevisiae

RSP5

GO:0007005

mitochondrion organization

PMID:10366593[33]

IGI: Inferred from Genetic Interaction

MDM1

P

complete

SGD

S. cerevisiae

RSP5

GO:0032443

regulation of ergosterol biosynthetic process

PMID:18771750[34]

IGI: Inferred from Genetic Interaction

SPT23|MGA2

P

complete

SGD

S. cerevisiae

RSP5

GO:0032956

regulation of actin cytoskeleton organization and biogenesis

PMID:15855235[35]

IGI: Inferred from Genetic Interaction

END3

P

complete

SGD

S. cerevisiae

RSP5

GO:0006808

regulation of nitrogen utilization

PMID:15247235[36]

IGI: Inferred from Genetic Interaction

NPR1

P

complete

SGD

S. cerevisiae

RSP5

GO:0019220

regulation of phosphate metabolic process

PMID:18165238[37]

IGI: Inferred from Genetic Interaction

PHO4

P

complete

SGD

S. cerevisiae

RSP5

GO:0000151

ubiquitin ligase complex

PMID:9931424[38]

IPI: Inferred from Physical Interaction

BUL1

C

complete

SGD

S. cerevisiae

RSP5

GO:0005739

mitochondrion

PMID:16823961[39] PMID:14576278[40]

IDA: Inferred from Direct Assay

C

complete

SGD

S. cerevisiae

RSP5

GO:0005737

cytoplasm

PMID:14657247[41] PMID:15078904[18]

IDA: Inferred from Direct Assay

C

complete

SGD

S. cerevisiae

RSP5

GO:0010008

endosome membrane

PMID:14657247[41]

IDA: Inferred from Direct Assay

C

complete

SGD

S. cerevisiae

RSP5

GO:0005794

Golgi apparatus

PMID:14657247[41]

IDA: Inferred from Direct Assay

C

complete

SGD

S. cerevisiae

RSP5

GO:0031234

extrinsic to internal side of plasma membrane

PMID:15078904[18]

IDA: Inferred from Direct Assay

C

complete

SGD

S. cerevisiae

RSP5

GO:0005634

nucleus

PMID:14608372[30]

IDA: Inferred from Direct Assay

C

complete

SGD

S. cerevisiae

RSP5

GO:0005934

cellular bud tip

PMID:14608372[30]

IDA: Inferred from Direct Assay

C

complete

FlyBase

Drosophila

FBgn0259174

GO:0045746

negative regulation of Notch signaling pathway

PMID:15620650[42]

IMP: Inferred from Mutant Phenotype

P

complete

FlyBase

Drosophila

FBgn0259174

GO:0005515

protein binding

PMID:12165468[43]

IPI: Inferred from Physical Interaction

FB:FBgn0010105

F

complete

FlyBase

Drosophila

FBgn0259174

GO:0016567

protein ubiquitination

PMID:12165468[43]

IDA: Inferred from Direct Assay

P

complete

FlyBase

Drosophila

FBgn0259174

NOT

GO:0007411

axon guidance

PMID:15657595[44]

IMP: Inferred from Mutant Phenotype

P

complete

FlyBase

Drosophila

FBgn0259174

GO:0007411

axon guidance

PMID:12165468[43]

IMP: Inferred from Mutant Phenotype

P

complete

BHF-UCL

Human

P46934

GO:0009405

pathogenesis

PMID:15126635[13]

IMP: Inferred from Mutant Phenotype

P

complete

FlyBase

Drosophila

FBgn0259174

GO:0045807

positive regulation of endocytosis

PMID:12165468[43]

IMP: Inferred from Mutant Phenotype

P

complete

BHF-UCL

Human

P46934

GO:0019089

transmission of virus

PMID:15126635[13]

IMP: Inferred from Mutant Phenotype

P

complete

BHF-UCL

Human

P46934

GO:0052171

growth or development during symbiotic interaction

PMID:15126635[13]

IMP: Inferred from Mutant Phenotype

P

complete

MGI

Mouse

Nedd4

GO:0005515

protein binding

PMID:10446181[45]

IPI: Inferred from Physical Interaction

UniProtKB:Q60760

F

complete

MGI

Mouse

Nedd4

GO:0004842

ubiquitin-protein ligase activity

PMID:9182527[46]

IDA: Inferred from Direct Assay

F

complete

MGI

Mouse

Nedd4

GO:0005829

cytosol

PMID:9182527[46]

IDA: Inferred from Direct Assay

C

complete

MGI

Mouse

Nedd4

GO:0000151

ubiquitin ligase complex

PMID:11042109[47]

IPI: Inferred from Physical Interaction

UniProtKB:Q9QYK7

C

complete

Notes

[back to top]


NEDD4

SGD: receptor-mediated endocytosis vs. ubiquitin-mediated endocytosis Should these be two different processes in GO? Are they different enough? The definition of RME in GO refers to ligand binding, but this doesn't always happen.

Action Item: SGD will submit a new term request to SourceForge for ubiquitin- mediated endocytosis.

SGD: RSP5/NEDD4, a ubiquitin ligase, directly ubiquitinates many targets that are involved in many different processes. Should RSP5 be annotated, then, to regulation of each of these processes?

For example, ergosterol biosynthesis. If a mutation in RSP5 results in loss of ergosterol biosynthesis, then it seems reasonable to annotate RSP5 to regulation of ergosterol biosynthesis with an IMP evidence code.

High throughput experiments show many proteins ubiquitinated by RSP5. Without other experiments, is it appropriate to annotate RSP5 to regulation of any of the processes in which the target proteins are involved?

Consensus seemed to be no; in the absence of other experimental data (i.e. mutant phenotypes) making this type of annotation wouldn't be appropriate.

GOA: If NEDD4 ubiquitinates a protein, is it appropriate to annotate to protein binding to capture the target?

Some groups capture targets in comments, but should targets be captured more explicitly with the MF annotation?

An analogous situation would be capturing enzyme and substrate interactions with a binding term.

In the past, there's been an understanding that if a physical interaction was transient, for example, an enzyme substrate interaction, then we haven't captured that binding interaction in GO.

However, how does this differ from a kinases being annotated to ATP binding, an annotation that *is* made in GO? (see InterPro2GO mappings, also)

Couldn't the relationship between kinase activity and ATP binding be captured in the ontology, i.e. kinase activity would be a child term of ATP binding?

Since not all kinases bind ATP, such a relationship would violate the true path rule.

But if we are going to annotate kinases that bind ATP to that MF term, we need to be consistent with other binding annotations.

Action Item: Put the issue of consistently annotating to binding terms on the agenda for the Montreal meeting.

Human and yeast NEDD4 proteins were annotated to many different BP terms. What are the appropriate terms for other groups to consider making ISS annotations?

Generally, MF and CC terms are more easily transferred for ISS annotations, but curators need to use discretion when making ISS annotations to BP terms. For example, it would be approrpiate to annotate a kinase to the BP term phosphorylation, but other processes would need to be assessed in the context of each organism and its biology.

The issue of automatic ISS annotations was raised. What is really meant by 'automatic ISS' and are these annotations ever appropriate?


The October 2008 electronic jamboree also annotated PFKL.

References

[back to top]


See Help:References for how to manage references in GONUTS.

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 Anindya, R et al. (2007) Damage-induced ubiquitylation of human RNA polymerase II by the ubiquitin ligase Nedd4, but not Cockayne syndrome proteins or BRCA1. Mol. Cell 28 386-97 PubMed GONUTS page
  2. 2.0 2.1 Imhof, MO & McDonnell, DP (1996) Yeast RSP5 and its human homolog hRPF1 potentiate hormone-dependent activation of transcription by human progesterone and glucocorticoid receptors. Mol. Cell. Biol. 16 2594-605 PubMed GONUTS page
  3. 3.0 3.1 3.2 3.3 3.4 Anan, T et al. (1998) Human ubiquitin-protein ligase Nedd4: expression, subcellular localization and selective interaction with ubiquitin-conjugating enzymes. Genes Cells 3 751-63 PubMed GONUTS page
  4. 4.0 4.1 Wang, X et al. (2007) NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell 128 129-39 PubMed GONUTS page
  5. Trotman, LC et al. (2007) Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell 128 141-56 PubMed GONUTS page
  6. 6.0 6.1 6.2 6.3 Shenoy, SK et al. (2008) Nedd4 mediates agonist-dependent ubiquitination, lysosomal targeting, and degradation of the beta2-adrenergic receptor. J. Biol. Chem. 283 22166-76 PubMed GONUTS page
  7. Pak, Y et al. (2006) Transport of LAPTM5 to lysosomes requires association with the ubiquitin ligase Nedd4, but not LAPTM5 ubiquitination. J. Cell Biol. 175 631-45 PubMed GONUTS page
  8. 8.0 8.1 8.2 8.3 8.4 Farr, TJ et al. (2000) Human Nedd4 interacts with the human epithelial Na+ channel: WW3 but not WW1 binds to Na+-channel subunits. Biochem. J. 345 Pt 3 503-9 PubMed GONUTS page
  9. 9.0 9.1 9.2 9.3 Ing, B et al. (2007) Regulation of Commissureless by the ubiquitin ligase DNedd4 is required for neuromuscular synaptogenesis in Drosophila melanogaster. Mol. Cell. Biol. 27 481-96 PubMed GONUTS page
  10. Gavva, NR et al. (1997) Interaction of WW domains with hematopoietic transcription factor p45/NF-E2 and RNA polymerase II. J. Biol. Chem. 272 24105-8 PubMed GONUTS page
  11. 11.0 11.1 Cristillo, AD et al. (2003) Cloning and characterization of N4WBP5A, an inducible, cyclosporine-sensitive, Nedd4-binding protein in human T lymphocytes. J. Biol. Chem. 278 34587-97 PubMed GONUTS page
  12. Kanelis, V et al. (2006) Structural determinants for high-affinity binding in a Nedd4 WW3* domain-Comm PY motif complex. Structure 14 543-53 PubMed GONUTS page
  13. 13.0 13.1 13.2 13.3 13.4 Blot, V et al. (2004) Nedd4.1-mediated ubiquitination and subsequent recruitment of Tsg101 ensure HTLV-1 Gag trafficking towards the multivesicular body pathway prior to virus budding. J. Cell. Sci. 117 2357-67 PubMed GONUTS page
  14. Xu, LL et al. (2003) PMEPA1, an androgen-regulated NEDD4-binding protein, exhibits cell growth inhibitory function and decreased expression during prostate cancer progression. Cancer Res. 63 4299-304 PubMed GONUTS page
  15. Hamilton, MH et al. (2001) Nuclear import/export of hRPF1/Nedd4 regulates the ubiquitin-dependent degradation of its nuclear substrates. J. Biol. Chem. 276 26324-31 PubMed GONUTS page
  16. 16.0 16.1 16.2 16.3 16.4 Sakata, T et al. (2004) Drosophila Nedd4 regulates endocytosis of notch and suppresses its ligand-independent activation. Curr. Biol. 14 2228-36 PubMed GONUTS page
  17. 17.0 17.1 Huibregtse, JM et al. (1997) The large subunit of RNA polymerase II is a substrate of the Rsp5 ubiquitin-protein ligase. Proc. Natl. Acad. Sci. U.S.A. 94 3656-61 PubMed GONUTS page
  18. 18.0 18.1 18.2 Dunn, R et al. (2004) The C2 domain of the Rsp5 ubiquitin ligase binds membrane phosphoinositides and directs ubiquitination of endosomal cargo. J. Cell Biol. 165 135-44 PubMed GONUTS page
  19. Stamenova, SD et al. (2004) The Rsp5 ubiquitin ligase binds to and ubiquitinates members of the yeast CIN85-endophilin complex, Sla1-Rvs167. J. Biol. Chem. 279 16017-25 PubMed GONUTS page
  20. Springael, JY & André, B (1998) Nitrogen-regulated ubiquitination of the Gap1 permease of Saccharomyces cerevisiae. Mol. Biol. Cell 9 1253-63 PubMed GONUTS page
  21. Kim, Y et al. (2007) GGA2- and ubiquitin-dependent trafficking of Arn1, the ferrichrome transporter of Saccharomyces cerevisiae. Mol. Biol. Cell 18 1790-802 PubMed GONUTS page
  22. Gwizdek, C et al. (2005) The mRNA nuclear export factor Hpr1 is regulated by Rsp5-mediated ubiquitylation. J. Biol. Chem. 280 13401-5 PubMed GONUTS page
  23. Oestreich, AJ et al. (2007) Characterization of multiple multivesicular body sorting determinants within Sna3: a role for the ubiquitin ligase Rsp5. Mol. Biol. Cell 18 707-20 PubMed GONUTS page
  24. Shcherbik, N et al. (2003) Rsp5p is required for ER bound Mga2p120 polyubiquitination and release of the processed/tethered transactivator Mga2p90. Curr. Biol. 13 1227-33 PubMed GONUTS page
  25. Dunn, R & Hicke, L (2001) Domains of the Rsp5 ubiquitin-protein ligase required for receptor-mediated and fluid-phase endocytosis. Mol. Biol. Cell 12 421-35 PubMed GONUTS page
  26. Davies, BA et al. (2003) Vps9p CUE domain ubiquitin binding is required for efficient endocytic protein traffic. J. Biol. Chem. 278 19826-33 PubMed GONUTS page
  27. Hoppe, T et al. (2000) Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell 102 577-86 PubMed GONUTS page
  28. Harkness, TA et al. (2002) The ubiquitin-dependent targeting pathway in Saccharomyces cerevisiae plays a critical role in multiple chromatin assembly regulatory steps. Genetics 162 615-32 PubMed GONUTS page
  29. Kraft, C & Peter, M (2008) Is the Rsp5 ubiquitin ligase involved in the regulation of ribophagy? Autophagy 4 838-40 PubMed GONUTS page
  30. 30.0 30.1 30.2 30.3 30.4 30.5 Neumann, S et al. (2003) Formation and nuclear export of tRNA, rRNA and mRNA is regulated by the ubiquitin ligase Rsp5p. EMBO Rep. 4 1156-62 PubMed GONUTS page
  31. Beaudenon, SL et al. (1999) Rsp5 ubiquitin-protein ligase mediates DNA damage-induced degradation of the large subunit of RNA polymerase II in Saccharomyces cerevisiae. Mol. Cell. Biol. 19 6972-9 PubMed GONUTS page
  32. Andoh, T et al. (2002) PY motifs of Rod1 are required for binding to Rsp5 and for drug resistance. FEBS Lett. 525 131-4 PubMed GONUTS page
  33. Fisk, HA & Yaffe, MP (1999) A role for ubiquitination in mitochondrial inheritance in Saccharomyces cerevisiae. J. Cell Biol. 145 1199-208 PubMed GONUTS page
  34. Kaliszewski, P et al. (2008) Rsp5p ubiquitin ligase and the transcriptional activators Spt23p and Mga2p are involved in co-regulation of biosynthesis of end products of the mevalonate pathway and triacylglycerol in yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta 1781 627-34 PubMed GONUTS page
  35. Gourlay, CW & Ayscough, KR (2005) Identification of an upstream regulatory pathway controlling actin-mediated apoptosis in yeast. J. Cell. Sci. 118 2119-32 PubMed GONUTS page
  36. Crespo, JL et al. (2004) NPR1 kinase and RSP5-BUL1/2 ubiquitin ligase control GLN3-dependent transcription in Saccharomyces cerevisiae. J. Biol. Chem. 279 37512-7 PubMed GONUTS page
  37. Estrella, LA et al. (2008) The Rsp5 E3 ligase mediates turnover of low affinity phosphate transporters in Saccharomyces cerevisiae. J. Biol. Chem. 283 5327-34 PubMed GONUTS page
  38. Yashiroda, H et al. (1998) The PY-motif of Bul1 protein is essential for growth of Saccharomyces cerevisiae under various stress conditions. Gene 225 39-46 PubMed GONUTS page
  39. Reinders, J et al. (2006) Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteomics. J. Proteome Res. 5 1543-54 PubMed GONUTS page
  40. Sickmann, A et al. (2003) The proteome of Saccharomyces cerevisiae mitochondria. Proc. Natl. Acad. Sci. U.S.A. 100 13207-12 PubMed GONUTS page
  41. 41.0 41.1 41.2 Katzmann, DJ et al. (2004) Multivesicular body sorting: ubiquitin ligase Rsp5 is required for the modification and sorting of carboxypeptidase S. Mol. Biol. Cell 15 468-80 PubMed GONUTS page
  42. Wilkin, MB et al. (2004) Regulation of notch endosomal sorting and signaling by Drosophila Nedd4 family proteins. Curr. Biol. 14 2237-44 PubMed GONUTS page
  43. 43.0 43.1 43.2 43.3 Myat, A et al. (2002) Drosophila Nedd4, a ubiquitin ligase, is recruited by Commissureless to control cell surface levels of the roundabout receptor. Neuron 35 447-59 PubMed GONUTS page
  44. Keleman, K et al. (2005) Comm function in commissural axon guidance: cell-autonomous sorting of Robo in vivo. Nat. Neurosci. 8 156-63 PubMed GONUTS page
  45. Morrione, A et al. (1999) mGrb10 interacts with Nedd4. J. Biol. Chem. 274 24094-9 PubMed GONUTS page
  46. 46.0 46.1 Hatakeyama, S et al. (1997) Subcellular localization and ubiquitin-conjugating enzyme (E2) interactions of mammalian HECT family ubiquitin protein ligases. J. Biol. Chem. 272 15085-92 PubMed GONUTS page
  47. Jolliffe, CN et al. (2000) Identification of multiple proteins expressed in murine embryos as binding partners for the WW domains of the ubiquitin-protein ligase Nedd4. Biochem. J. 351 Pt 3 557-65 PubMed GONUTS page