GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

YEAST:UAF30

From GONUTS
Jump to: navigation, search
Species (Taxon ID) Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast). (559292)
Gene Name(s) UAF30
Protein Name(s) Upstream activation factor subunit UAF30

Upstream activation factor 30 KDa subunit p30

External Links
UniProt Q08747
EMBL Z75203
BK006948
PIR S67199
RefSeq NP_014938.3
ProteinModelPortal Q08747
SMR Q08747
BioGrid 34683
IntAct Q08747
MINT MINT-4503720
iPTMnet Q08747
MaxQB Q08747
PRIDE Q08747
EnsemblFungi YOR295W
GeneID 854470
KEGG sce:YOR295W
EuPathDB FungiDB:YOR295W
SGD S000005821
GeneTree ENSGT00390000006048
HOGENOM HOG000000765
InParanoid Q08747
KO K15223
OrthoDB EOG092C4M4L
BioCyc YEAST:G3O-33780-MONOMER
PRO PR:Q08747
Proteomes UP000002311
GO GO:0005730
GO:0000500
GO:0001165
GO:0006325
GO:0006356
GO:0042790
Gene3D 1.10.10.60
1.10.245.10
InterPro IPR014876
IPR009057
IPR019835
IPR003121
Pfam PF08766
PF02201
SMART SM00151
SUPFAM SSF47592

Annotations

Qualifier GO ID GO term name Reference ECO ID ECO term name with/from Aspect Extension Notes Status
GO:0005759

mitochondrial matrix

PMID:9305894[1]

ECO:0000314

C

Figure 6 shows that like human p32, p30 is also localized in the mitochondrial matrix. Upstream activation factor subunit UAF30 Saccharomyces cerevisiae

complete
CACAO 12794

GO:0016049

cell growth

PMID:9305894[1]

ECO:0000315

P

Disruption of the p30 gene in yeast caused growth retardation in the glycerol medium, as seen in Figure 7. Thus it can be inferred that p30 is important for cell growth Upstream activation factor subunit UAF30 Saccharomyces cerevisiae

complete
CACAO 12795

involved_in

GO:0042790

nucleolar large rRNA transcription by RNA polymerase I

PMID:11500378[2]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0042790

nucleolar large rRNA transcription by RNA polymerase I

PMID:18765638[3]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006325

chromatin organization

PMID:20154141[4]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0005730

nucleolus

PMID:22362748[5]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

enables

GO:0001181

RNA polymerase I general transcription initiation factor activity

PMID:18765638[3]

ECO:0000315

mutant phenotype evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0001165

RNA polymerase I upstream control element sequence-specific DNA binding

PMID:18451108[6]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

part_of

GO:0000500

RNA polymerase I upstream activating factor complex

PMID:11500378[2]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0005634

nucleus

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0539

C

Seeded From UniProt

complete

part_of

GO:0005730

nucleolus

GO_REF:0000039

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-SubCell:SL-0188

C

Seeded From UniProt

complete

Notes

References

See Help:References for how to manage references in GONUTS.

  1. 1.0 1.1 Muta, T et al. (1997) p32 protein, a splicing factor 2-associated protein, is localized in mitochondrial matrix and is functionally important in maintaining oxidative phosphorylation. J. Biol. Chem. 272 24363-70 PubMed GONUTS page
  2. 2.0 2.1 Siddiqi, IN et al. (2001) Transcription of chromosomal rRNA genes by both RNA polymerase I and II in yeast uaf30 mutants lacking the 30 kDa subunit of transcription factor UAF. EMBO J. 20 4512-21 PubMed GONUTS page
  3. 3.0 3.1 Hontz, RD et al. (2008) Transcription of multiple yeast ribosomal DNA genes requires targeting of UAF to the promoter by Uaf30. Mol. Cell. Biol. 28 6709-19 PubMed GONUTS page
  4. Goetze, H et al. (2010) Alternative chromatin structures of the 35S rRNA genes in Saccharomyces cerevisiae provide a molecular basis for the selective recruitment of RNA polymerases I and II. Mol. Cell. Biol. 30 2028-45 PubMed GONUTS page
  5. Ha, CW et al. (2012) Nsi1 plays a significant role in the silencing of ribosomal DNA in Saccharomyces cerevisiae. Nucleic Acids Res. 40 4892-903 PubMed GONUTS page
  6. Merz, K et al. (2008) Actively transcribed rRNA genes in S. cerevisiae are organized in a specialized chromatin associated with the high-mobility group protein Hmo1 and are largely devoid of histone molecules. Genes Dev. 22 1190-204 PubMed GONUTS page