GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

YEAST:SIR3

From GONUTS
Jump to: navigation, search
Species (Taxon ID) Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast). (559292)
Gene Name(s) SIR3 (synonyms: CMT1, MAR2, STE8)
Protein Name(s) Regulatory protein SIR3

Silent information regulator 3

External Links
UniProt P06701
EMBL X01420
U21094
AY693157
BK006945
PIR S59410
RefSeq NP_013547.3
PDB 2FL7
2FVU
3OWT
3TE6
3TU4
3ZCO
4JJN
4KUD
4KUI
4KUL
4LD9
PDBsum 2FL7
2FVU
3OWT
3TE6
3TU4
3ZCO
4JJN
4KUD
4KUI
4KUL
4LD9
DisProt DP00533
ProteinModelPortal P06701
SMR P06701
BioGrid 31701
DIP DIP-595N
IntAct P06701
MINT MINT-673027
STRING 4932.YLR442C
MaxQB P06701
PaxDb P06701
PeptideAtlas P06701
EnsemblFungi [example_ID YLR442C]
GeneID 851163
KEGG sce:YLR442C
SGD S000004434
eggNOG COG1474
GeneTree ENSGT00770000121601
InParanoid P06701
KO K11122
OMA YLIHEIR
OrthoDB EOG7ZWD9N
BioCyc YEAST:G3O-32498-MONOMER
EvolutionaryTrace P06701
NextBio 967960
Proteomes UP000002311
Genevestigator P06701
GO GO:0005677
GO:0000781
GO:0000784
GO:0005720
GO:0005724
GO:0005730
GO:0003682
GO:0003690
GO:0042802
GO:0031493
GO:0031491
GO:0042803
GO:0003697
GO:0030466
GO:0031507
GO:0001308
GO:0070481
GO:0006351
InterPro IPR001025
Pfam PF01426
SMART SM00439
PROSITE PS51038

Annotations

Qualifier GO ID GO term name Reference ECO ID ECO term name with/from Aspect Extension Notes Status
GO:0007569

cell aging

PMID:10521401[1]

ECO:0000315

P

Fig.1(A)demonstrates disruption of sir3 resulted in a 20% decrease in mean life span.

complete

part_of

GO:0005739

mitochondrion

PMID:16823961[2]

ECO:0007005

high throughput direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0005739

mitochondrion

PMID:14576278[3]

ECO:0007005

high throughput direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0034398

telomere tethering at nuclear periphery

PMID:26399229[4]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0097695

establishment of protein-containing complex localization to telomere

PMID:26218225[5]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

has_input:(GO:0005697)

Seeded From UniProt

complete

part_of

GO:0000784

nuclear chromosome, telomeric region

PMID:27122604[6]

ECO:0000315

mutant phenotype evidence used in manual assertion

C

adjacent_to:(GO:0034399)

Seeded From UniProt

complete

involved_in

GO:0034398

telomere tethering at nuclear periphery

PMID:27122604[6]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006303

double-strand break repair via nonhomologous end joining

PMID:9501103[7]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006348

chromatin silencing at telomere

PMID:9501103[7]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006348

chromatin silencing at telomere

PMID:1913809[8]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0030466

chromatin silencing at silent mating-type cassette

PMID:3297920[9]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0070481

nuclear-transcribed mRNA catabolic process, non-stop decay

PMID:17660569[10]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0031507

heterochromatin assembly

PMID:16908543[11]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0031493

nucleosomal histone binding

PMID:18158898[12]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0031491

nucleosome binding

PMID:19217406[13]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0030466

chromatin silencing at silent mating-type cassette

PMID:16581798[14]

ECO:0000316

genetic interaction evidence used in manual assertion

SGD:S000001809

P

Seeded From UniProt

complete

involved_in

GO:0030466

chromatin silencing at silent mating-type cassette

PMID:16581798[14]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0005730

nucleolus

PMID:9150138[15]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0005724

nuclear telomeric heterochromatin

PMID:9214640[16]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0005720

nuclear heterochromatin

PMID:20176978[17]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0005677

chromatin silencing complex

PMID:9122169[18]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

enables

GO:0003697

single-stranded DNA binding

PMID:19099415[19]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0003690

double-stranded DNA binding

PMID:19099415[19]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0003682

chromatin binding

PMID:18195043[20]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0001308

negative regulation of chromatin silencing involved in replicative cell aging

PMID:9150138[15]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0000784

nuclear chromosome, telomeric region

PMID:9710643[21]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0000781

chromosome, telomeric region

PMID:16956377[22]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0000784

nuclear chromosome, telomeric region

PMID:21873635[23]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

PANTHER:PTN000080057
SGD:S000004434
UniProtKB:Q13415

C

Seeded From UniProt

complete

enables

GO:0042802

identical protein binding

PMID:23299941[24]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:P06701

F

Seeded From UniProt

complete

enables

GO:0042802

identical protein binding

PMID:21179020[25]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:P06701

F

Seeded From UniProt

complete

enables

GO:0042802

identical protein binding

PMID:16717101[26]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:P06701

F

Seeded From UniProt

complete

enables

GO:0003682

chromatin binding

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR001025

F

Seeded From UniProt

complete

part_of

GO:0005634

nucleus

GO_REF:0000037
GO_REF:0000039

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0539
UniProtKB-SubCell:SL-0191

C

Seeded From UniProt

complete

enables

GO:0003677

DNA binding

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0238

F

Seeded From UniProt

complete

Notes

References

See Help:References for how to manage references in GONUTS.

  1. Kaeberlein, M et al. (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13 2570-80 PubMed GONUTS page
  2. Reinders, J et al. (2006) Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteomics. J. Proteome Res. 5 1543-54 PubMed GONUTS page
  3. Sickmann, A et al. (2003) The proteome of Saccharomyces cerevisiae mitochondria. Proc. Natl. Acad. Sci. U.S.A. 100 13207-12 PubMed GONUTS page
  4. Guidi, M et al. (2015) Spatial reorganization of telomeres in long-lived quiescent cells. Genome Biol. 16 206 PubMed GONUTS page
  5. Hass, EP & Zappulla, DC (2015) The Ku subunit of telomerase binds Sir4 to recruit telomerase to lengthen telomeres in S. cerevisiae. Elife 4 PubMed GONUTS page
  6. 6.0 6.1 Laporte, D et al. (2016) Quiescent Saccharomyces cerevisiae forms telomere hyperclusters at the nuclear membrane vicinity through a multifaceted mechanism involving Esc1, the Sir complex, and chromatin condensation. Mol. Biol. Cell 27 1875-84 PubMed GONUTS page
  7. 7.0 7.1 Boulton, SJ & Jackson, SP (1998) Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J. 17 1819-28 PubMed GONUTS page
  8. Aparicio, OM et al. (1991) Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell 66 1279-87 PubMed GONUTS page
  9. Rine, J & Herskowitz, I (1987) Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics 116 9-22 PubMed GONUTS page
  10. Wilson, MA et al. (2007) A genomic screen in yeast reveals novel aspects of nonstop mRNA metabolism. Genetics 177 773-84 PubMed GONUTS page
  11. Liaw, H & Lustig, AJ (2006) Sir3 C-terminal domain involvement in the initiation and spreading of heterochromatin. Mol. Cell. Biol. 26 7616-31 PubMed GONUTS page
  12. Altaf, M et al. (2007) Interplay of chromatin modifiers on a short basic patch of histone H4 tail defines the boundary of telomeric heterochromatin. Mol. Cell 28 1002-14 PubMed GONUTS page
  13. Martino, F et al. (2009) Reconstitution of yeast silent chromatin: multiple contact sites and O-AADPR binding load SIR complexes onto nucleosomes in vitro. Mol. Cell 33 323-34 PubMed GONUTS page
  14. 14.0 14.1 Connelly, JJ et al. (2006) Structure and function of the Saccharomyces cerevisiae Sir3 BAH domain. Mol. Cell. Biol. 26 3256-65 PubMed GONUTS page
  15. 15.0 15.1 Kennedy, BK et al. (1997) Redistribution of silencing proteins from telomeres to the nucleolus is associated with extension of life span in S. cerevisiae. Cell 89 381-91 PubMed GONUTS page
  16. Gotta, M et al. (1997) Localization of Sir2p: the nucleolus as a compartment for silent information regulators. EMBO J. 16 3243-55 PubMed GONUTS page
  17. Lynch, PJ & Rusche, LN (2010) An auxiliary silencer and a boundary element maintain high levels of silencing proteins at HMR in Saccharomyces cerevisiae. Genetics 185 113-27 PubMed GONUTS page
  18. Moazed, D et al. (1997) Silent information regulator protein complexes in Saccharomyces cerevisiae: a SIR2/SIR4 complex and evidence for a regulatory domain in SIR4 that inhibits its interaction with SIR3. Proc. Natl. Acad. Sci. U.S.A. 94 2186-91 PubMed GONUTS page
  19. 19.0 19.1 Adkins, NL et al. (2009) Role of nucleic acid binding in Sir3p-dependent interactions with chromatin fibers. Biochemistry 48 276-88 PubMed GONUTS page
  20. Valenzuela, L et al. (2008) Long-range communication between the silencers of HMR. Mol. Cell. Biol. 28 1924-35 PubMed GONUTS page
  21. Bourns, BD et al. (1998) Sir proteins, Rif proteins, and Cdc13p bind Saccharomyces telomeres in vivo. Mol. Cell. Biol. 18 5600-8 PubMed GONUTS page
  22. Clément, M et al. (2006) The nuclear GTPase Gsp1p can affect proper telomeric function through the Sir4 protein in Saccharomyces cerevisiae. Mol. Microbiol. 62 453-68 PubMed GONUTS page
  23. Gaudet, P et al. (2011) Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Brief. Bioinformatics 12 449-62 PubMed GONUTS page
  24. Oppikofer, M et al. (2013) Dimerization of Sir3 via its C-terminal winged helix domain is essential for yeast heterochromatin formation. EMBO J. 32 437-49 PubMed GONUTS page
  25. Lambert, JP et al. (2010) Defining the budding yeast chromatin-associated interactome. Mol. Syst. Biol. 6 448 PubMed GONUTS page
  26. King, DA et al. (2006) Domain structure and protein interactions of the silent information regulator Sir3 revealed by screening a nested deletion library of protein fragments. J. Biol. Chem. 281 20107-19 PubMed GONUTS page