GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

YEAST:MRE11

From GONUTS
Jump to: navigation, search
Species (Taxon ID) Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast). (559292)
Gene Name(s) MRE11
Protein Name(s) Double-strand break repair protein MRE11
External Links
UniProt P32829
EMBL D11463
Z49939
U60829
BK006946
PIR S57592
RefSeq NP_013951.1
ProteinModelPortal P32829
SMR P32829
BioGrid 35402
DIP DIP-1313N
IntAct P32829
MINT MINT-388080
MaxQB P32829
PaxDb P32829
EnsemblFungi [example_ID YMR224C]
GeneID 855264
KEGG sce:YMR224C
CYGD YMR224c
SGD S000004837
eggNOG COG0420
GeneTree ENSGT00390000017288
HOGENOM HOG000216581
InParanoid P32829
KO K10865
OMA RMFVNKQ
OrthoDB EOG7J187V
BioCyc YEAST:G3O-32905-MONOMER
Reactome REACT_243677
REACT_268498
NextBio 978864
PRO PR:P32829
Proteomes UP000002311
Genevestigator P32829
GO GO:0030870
GO:0005654
GO:0005634
GO:0008408
GO:0008296
GO:0003691
GO:0004520
GO:0004519
GO:0051880
GO:0030145
GO:0032947
GO:0043047
GO:0042162
GO:0030437
GO:0006284
GO:0000737
GO:0010791
GO:0006281
GO:0000727
GO:0006303
GO:0042138
GO:0000706
GO:0097552
GO:0046939
GO:0007131
GO:0051037
Gene3D 3.60.21.10
InterPro IPR004843
IPR003701
IPR029052
IPR007281
PANTHER PTHR10139
Pfam PF00149
PF04152
PIRSF PIRSF000882
SUPFAM SSF56300
TIGRFAMs TIGR00583

Annotations

Qualifier GO ID GO term name Reference ECO ID ECO term name with/from Aspect Extension Notes Status
GO:0007126

meiosis

PMID:9858579[1]

ECO:0000315

P

Figure 8

complete
CACAO 2020

GO:0010780

meiotic DNA double-strand break formation involved in reciprocal meiotic recombination

PMID:7625279[2]

ECO:0000315

P

Table 1

complete
CACAO 5031

GO:0042138

meiotic DNA double-strand break formation

PMID:7625279[2]

ECO:0000315

P

Table 1

complete
CACAO 5032

GO:0030437

ascospore formation

PMID:7625279[2]

ECO:0000315

P

See Table 1

complete
CACAO 5039

GO:0006302

double-strand break repair

PMID:22002605[3]

ECO:0000315

P

Figure 1 To investigate a specific role for the Mre11 3′–5′ exonuclease during DNA repair in cycling cells, we challenged yeast cells with exposure to DNA damaging agents. Similar to complete abrogation of the endo/exonuclease activities (mre11-H125N), reduced Mre11 exonuclease activity (mre11-H59S) sensitized cells to the DNA alkylating agent methyl methanesulphonate (MMS) and to the topoisomerase poison camptothecin (CPT; Fig. 3).Compared to an MRE11 deletion, however, mre11-H59S and mre11-H125N are themselves far less sensitive, consistent with physical interactions within the Mre11 complex being retained (Supplementary Fig. 9). In agreement with Mre11 endonuclease activity being unaffected in mre11-H59S, and allowing redundant processing pathways, combining mre11-H59S with a deletion of EXO1 did not further sensitize cells to MMS (Supplementary Fig. 10). Together these observations indicate that the exonuclease activity of Mre11 is involved in the repair of various classes of DNA lesion.

complete
CACAO 5537

GO:0010780

meiotic DNA double-strand break formation involved in reciprocal meiotic recombination

PMID:7625279[2]

ECO:0000315

P

Table 1

complete
CACAO 5137

GO:0008296

3'-5'-exodeoxyribonuclease activity

PMID:22002605[3]

ECO:0000315

F

Figure 2C shows that Mre11 has 3'-5' exonuclease activity on DNA, and that the mutant Mre-11 (H59S) has it to a lesser degree.

complete
CACAO 5659

GO:0030870

Mre11 complex

PMID:27746018[4]

ECO:0000314

C

Fig 4C: C) Recombinant Mre11-Rad50 (MR) and Mre11-Rad50-Xrs2 (MRX) used in this study. Saccharomyces cerevisiae MRE11.

complete
CACAO 12786

part_of

GO:0005739

mitochondrion

PMID:16823961[5]

ECO:0007005

high throughput direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0005634

nucleus

PMID:22842922[6]

ECO:0007005

high throughput direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0005739

mitochondrion

PMID:14576278[7]

ECO:0007005

high throughput direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0035753

maintenance of DNA trinucleotide repeats

PMID:27173583[8]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0000723

telomere maintenance

PMID:9501103[9]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006303

double-strand break repair via nonhomologous end joining

PMID:9501103[9]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0008296

3'-5'-exodeoxyribonuclease activity

PMID:22002605[3]

ECO:0000315

mutant phenotype evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0006302

double-strand break repair

PMID:22002605[3]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0030437

ascospore formation

PMID:7625279[2]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0010780

meiotic DNA double-strand break formation involved in reciprocal meiotic recombination

PMID:7625279[2]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0010791

DNA double-strand break processing involved in repair via synthesis-dependent strand annealing

PMID:23254329[10]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0097552

mitochondrial double-strand break repair via homologous recombination

PMID:22214610[11]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0051880

G-quadruplex DNA binding

PMID:17698079[12]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0051037

regulation of transcription involved in meiotic cell cycle

PMID:17396017[13]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0043047

single-stranded telomeric DNA binding

PMID:17698079[12]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0042162

telomeric DNA binding

PMID:16116037[14]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0042162

telomeric DNA binding

PMID:15721260[15]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0032947

protein-containing complex scaffold activity

PMID:9845372[16]

ECO:0000316

genetic interaction evidence used in manual assertion

SGD:S000002777
SGD:S000005194

F

Seeded From UniProt

complete

enables

GO:0032947

protein-containing complex scaffold activity

PMID:9845372[16]

ECO:0000315

mutant phenotype evidence used in manual assertion

F

Seeded From UniProt

complete

part_of

GO:0030870

Mre11 complex

PMID:9845372[16]

ECO:0000353

physical interaction evidence used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0030437

ascospore formation

PMID:17396017[13]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0008408

3'-5' exonuclease activity

PMID:11454871[17]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0007131

reciprocal meiotic recombination

PMID:8417989[18]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006303

double-strand break repair via nonhomologous end joining

PMID:12399380[19]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006284

base-excision repair

PMID:20040573[20]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006281

DNA repair

PMID:7789757[21]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0005634

nucleus

PMID:9845372[16]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0005634

nucleus

PMID:15548595[22]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

enables

GO:0004520

endodeoxyribonuclease activity

PMID:16116037[14]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0004519

endonuclease activity

PMID:9858579[1]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

contributes_to

GO:0004017

adenylate kinase activity

PMID:17349953[23]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0003691

double-stranded telomeric DNA binding

PMID:17698079[12]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0000727

double-strand break repair via break-induced replication

PMID:17321803[24]

ECO:0000316

genetic interaction evidence used in manual assertion

SGD:S000004897

P

Seeded From UniProt

complete

involved_in

GO:0000727

double-strand break repair via break-induced replication

PMID:17321803[24]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0097552

mitochondrial double-strand break repair via homologous recombination

PMID:21873635[25]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

PANTHER:PTN000015644
SGD:S000004837

P

Seeded From UniProt

complete

involved_in

GO:0042138

meiotic DNA double-strand break formation

PMID:21873635[25]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

PANTHER:PTN000015644
PomBase:SPAC13C5.07

P

Seeded From UniProt

complete

involved_in

GO:0031573

intra-S DNA damage checkpoint

PMID:21873635[25]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

MGI:MGI:1100512
PANTHER:PTN000015646
PomBase:SPAC13C5.07

P

Seeded From UniProt

complete

enables

GO:0008408

3'-5' exonuclease activity

PMID:21873635[25]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

PANTHER:PTN002228124
SGD:S000004837
UniProtKB:P49959

F

Seeded From UniProt

complete

enables

GO:0008296

3'-5'-exodeoxyribonuclease activity

PMID:21873635[25]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

PANTHER:PTN002228124
SGD:S000004837

F

Seeded From UniProt

complete

involved_in

GO:0007095

mitotic G2 DNA damage checkpoint

PMID:21873635[25]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

FB:FBgn0020270
MGI:MGI:1100512
PANTHER:PTN000015644

P

Seeded From UniProt

complete

involved_in

GO:0006303

double-strand break repair via nonhomologous end joining

PMID:21873635[25]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

PANTHER:PTN000015644
PomBase:SPAC13C5.07
SGD:S000004837
UniProtKB:P49959

P

Seeded From UniProt

complete

colocalizes_with

GO:0000784

nuclear chromosome, telomeric region

PMID:21873635[25]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

MGI:MGI:1100512
PANTHER:PTN000015644
PomBase:SPAC13C5.07
UniProtKB:P49959

C

Seeded From UniProt

complete

involved_in

GO:0000724

double-strand break repair via homologous recombination

PMID:21873635[25]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

PANTHER:PTN000015644
PomBase:SPAC13C5.07
SGD:S000004837
UniProtKB:P49959

P

Seeded From UniProt

complete

involved_in

GO:0000723

telomere maintenance

PMID:21873635[25]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

FB:FBgn0020270
PANTHER:PTN000015644
PomBase:SPAC13C5.07
SGD:S000004837
UniProtKB:P49959

P

Seeded From UniProt

complete

enables

GO:0008296

3'-5'-exodeoxyribonuclease activity

PMID:9858579[1]

ECO:0000269

experimental evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0008296

3'-5'-exodeoxyribonuclease activity

PMID:9845372[16]

ECO:0000269

experimental evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0008296

3'-5'-exodeoxyribonuclease activity

PMID:9799249[26]

ECO:0000269

experimental evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0008296

3'-5'-exodeoxyribonuclease activity

PMID:11454871[17]

ECO:0000269

experimental evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0046940

nucleoside monophosphate phosphorylation

GO_REF:0000108

ECO:0000364

evidence based on logical inference from manual annotation used in automatic assertion

GO:0004017

P

Seeded From UniProt

complete

enables

GO:0004519

endonuclease activity

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR003701
InterPro:IPR007281

F

Seeded From UniProt

complete

part_of

GO:0005634

nucleus

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR007281

C

Seeded From UniProt

complete

involved_in

GO:0006302

double-strand break repair

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR003701
InterPro:IPR007281

P

Seeded From UniProt

complete

enables

GO:0008408

3'-5' exonuclease activity

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR003701

F

Seeded From UniProt

complete

enables

GO:0016787

hydrolase activity

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR004843

F

Seeded From UniProt

complete

enables

GO:0030145

manganese ion binding

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR007281

F

Seeded From UniProt

complete

part_of

GO:0030870

Mre11 complex

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR003701

C

Seeded From UniProt

complete

involved_in

GO:0042138

meiotic DNA double-strand break formation

PMID:9334324[27]

ECO:0000304

author statement supported by traceable reference used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0000706

meiotic DNA double-strand break processing

PMID:9334324[27]

ECO:0000304

author statement supported by traceable reference used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0005654

nucleoplasm

Reactome:R-SCE-981784

ECO:0000304

author statement supported by traceable reference used in manual assertion

C

Seeded From UniProt

complete

enables

GO:0016787

hydrolase activity

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0378

F

Seeded From UniProt

complete

enables

GO:0004519

endonuclease activity

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0255

F

Seeded From UniProt

complete

involved_in

GO:0006281

DNA repair

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0234

P

Seeded From UniProt

complete

involved_in

GO:0051321

meiotic cell cycle

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0469

P

Seeded From UniProt

complete

enables

GO:0004518

nuclease activity

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0540

F

Seeded From UniProt

complete

enables

GO:0004527

exonuclease activity

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0269

F

Seeded From UniProt

complete

part_of

GO:0005634

nucleus

GO_REF:0000037
GO_REF:0000039

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0539
UniProtKB-SubCell:SL-0191

C

Seeded From UniProt

complete

involved_in

GO:0006974

cellular response to DNA damage stimulus

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0227

P

Seeded From UniProt

complete

Notes

References

See Help:References for how to manage references in GONUTS.

  1. 1.0 1.1 1.2 Moreau, S et al. (1999) The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end joining, or telomere maintenance. Mol. Cell. Biol. 19 556-66 PubMed GONUTS page
  2. 2.0 2.1 2.2 2.3 2.4 2.5 Ogawa, H et al. (1995) Functions of the yeast meiotic recombination genes, MRE11 and MRE2. Adv. Biophys. 31 67-76 PubMed GONUTS page
  3. 3.0 3.1 3.2 3.3 Garcia, V et al. (2011) Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1. Nature 479 241-4 PubMed GONUTS page
  4. Oh, J et al. (2016) Xrs2 Dependent and Independent Functions of the Mre11-Rad50 Complex. Mol. Cell 64 405-415 PubMed GONUTS page
  5. Reinders, J et al. (2006) Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteomics. J. Proteome Res. 5 1543-54 PubMed GONUTS page
  6. Tkach, JM et al. (2012) Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. Nat. Cell Biol. 14 966-76 PubMed GONUTS page
  7. Sickmann, A et al. (2003) The proteome of Saccharomyces cerevisiae mitochondria. Proc. Natl. Acad. Sci. U.S.A. 100 13207-12 PubMed GONUTS page
  8. Ye, Y et al. (2016) The Saccharomyces cerevisiae Mre11-Rad50-Xrs2 complex promotes trinucleotide repeat expansions independently of homologous recombination. DNA Repair (Amst.) 43 1-8 PubMed GONUTS page
  9. 9.0 9.1 Boulton, SJ & Jackson, SP (1998) Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J. 17 1819-28 PubMed GONUTS page
  10. Muñoz-Galván, S et al. (2013) Competing roles of DNA end resection and non-homologous end joining functions in the repair of replication-born double-strand breaks by sister-chromatid recombination. Nucleic Acids Res. 41 1669-83 PubMed GONUTS page
  11. Kalifa, L et al. (2012) Mitochondrial genome maintenance: roles for nuclear nonhomologous end-joining proteins in Saccharomyces cerevisiae. Genetics 190 951-64 PubMed GONUTS page
  12. 12.0 12.1 12.2 Ghosal, G & Muniyappa, K (2007) The characterization of Saccharomyces cerevisiae Mre11/Rad50/Xrs2 complex reveals that Rad50 negatively regulates Mre11 endonucleolytic but not the exonucleolytic activity. J. Mol. Biol. 372 864-82 PubMed GONUTS page
  13. 13.0 13.1 Kugou, K et al. (2007) Mre11 mediates gene regulation in yeast spore development. Genes Genet. Syst. 82 21-33 PubMed GONUTS page
  14. 14.0 14.1 Ghosal, G & Muniyappa, K (2005) Saccharomyces cerevisiae Mre11 is a high-affinity G4 DNA-binding protein and a G-rich DNA-specific endonuclease: implications for replication of telomeric DNA. Nucleic Acids Res. 33 4692-703 PubMed GONUTS page
  15. Takata, H et al. (2005) Late S phase-specific recruitment of Mre11 complex triggers hierarchical assembly of telomere replication proteins in Saccharomyces cerevisiae. Mol. Cell 17 573-83 PubMed GONUTS page
  16. 16.0 16.1 16.2 16.3 16.4 Usui, T et al. (1998) Complex formation and functional versatility of Mre11 of budding yeast in recombination. Cell 95 705-16 PubMed GONUTS page
  17. 17.0 17.1 Trujillo, KM & Sung, P (2001) DNA structure-specific nuclease activities in the Saccharomyces cerevisiae Rad50*Mre11 complex. J. Biol. Chem. 276 35458-64 PubMed GONUTS page
  18. Ajimura, M et al. (1993) Identification of new genes required for meiotic recombination in Saccharomyces cerevisiae. Genetics 133 51-66 PubMed GONUTS page
  19. Wilson, TE (2002) A genomics-based screen for yeast mutants with an altered recombination/end-joining repair ratio. Genetics 162 677-88 PubMed GONUTS page
  20. Steininger, S et al. (2010) A novel function for the Mre11-Rad50-Xrs2 complex in base excision repair. Nucleic Acids Res. 38 1853-65 PubMed GONUTS page
  21. Johzuka, K & Ogawa, H (1995) Interaction of Mre11 and Rad50: two proteins required for DNA repair and meiosis-specific double-strand break formation in Saccharomyces cerevisiae. Genetics 139 1521-32 PubMed GONUTS page
  22. Tsukamoto, Y et al. (2005) Xrs2p regulates Mre11p translocation to the nucleus and plays a role in telomere elongation and meiotic recombination. Mol. Biol. Cell 16 597-608 PubMed GONUTS page
  23. Bhaskara, V et al. (2007) Rad50 adenylate kinase activity regulates DNA tethering by Mre11/Rad50 complexes. Mol. Cell 25 647-61 PubMed GONUTS page
  24. 24.0 24.1 Krishna, S et al. (2007) Mre11 and Ku regulation of double-strand break repair by gene conversion and break-induced replication. DNA Repair (Amst.) 6 797-808 PubMed GONUTS page
  25. 25.0 25.1 25.2 25.3 25.4 25.5 25.6 25.7 25.8 25.9 Gaudet, P et al. (2011) Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Brief. Bioinformatics 12 449-62 PubMed GONUTS page
  26. Furuse, M et al. (1998) Distinct roles of two separable in vitro activities of yeast Mre11 in mitotic and meiotic recombination. EMBO J. 17 6412-25 PubMed GONUTS page
  27. 27.0 27.1 Roeder, GS (1997) Meiotic chromosomes: it takes two to tango. Genes Dev. 11 2600-21 PubMed GONUTS page