GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

DROME:SLIT

From GONUTS
Jump to: navigation, search
Species (Taxon ID) Drosophila melanogaster (Fruit fly). (7227)
Gene Name(s) sli
Protein Name(s) Protein slit

dSlit Protein slit N-product Protein slit C-product

External Links
UniProt P24014
EMBL X53959
AF126540
AE013599
AE013599
AE013599
AE013599
AE013599
M23543
PIR A36665
B36665
RefSeq NP_001097333.1
NP_001097334.1
NP_476727.1
NP_476728.1
NP_476729.1
UniGene Dm.4729
PDB 1W8A
PDBsum 1W8A
ProteinModelPortal P24014
SMR P24014
BioGrid 62473
IntAct P24014
PaxDb P24014
EnsemblMetazoa FBtr0330731
FBtr0330733
GeneID 36746
KEGG dme:Dmel_CG43758
CTD 36746
FlyBase FBgn0264089
eggNOG COG4886
GeneTree ENSGT00760000118786
InParanoid P24014
KO K06839
PhylomeDB P24014
Reactome REACT_236260
REACT_246260
REACT_246981
REACT_256055
REACT_263619
EvolutionaryTrace P24014
GenomeRNAi 36746
NextBio 800151
Proteomes UP000000803
Bgee P24014
GO GO:0031012
GO:0005576
GO:0005886
GO:0005578
GO:0071666
GO:0005509
GO:0008201
GO:0048495
GO:0007411
GO:0016199
GO:0048813
GO:0007502
GO:0035050
GO:0007427
GO:0008347
GO:0008406
GO:0050929
GO:0046331
GO:0007509
GO:0008078
GO:0030182
GO:0001764
GO:0003151
GO:0022409
GO:0010632
GO:2000274
GO:0035385
GO:0007432
Gene3D 2.60.120.200
InterPro IPR013320
IPR000483
IPR006207
IPR000742
IPR001881
IPR013032
IPR000152
IPR018097
IPR009030
IPR001791
IPR001611
IPR003591
IPR000372
IPR026906
Pfam PF00008
PF00054
PF00560
PF13306
PF13855
PF01463
PF01462
SMART SM00041
SM00181
SM00179
SM00282
SM00369
SM00082
SM00013
SUPFAM SSF49899
SSF57184
PROSITE PS00010
PS01185
PS01225
PS00022
PS01186
PS50026
PS01187
PS50025
PS51450

Annotations

Qualifier GO ID GO term name Reference ECO ID ECO term name with/from Aspect Extension Notes Status

involved_in

GO:0050929

induction of negative chemotaxis

PMID:2176636[1]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0008347

glial cell migration

PMID:2176636[1]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0007509

mesoderm migration involved in gastrulation

PMID:2176636[1]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0005576

extracellular region

PMID:2176636[1]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0007502

digestive tract mesoderm development

PMID:21377458[2]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0008406

gonad development

PMID:21377458[2]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0048813

dendrite morphogenesis

PMID:18817767[3]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0048495

Roundabout binding

PMID:18359766[4]

ECO:0000353

physical interaction evidence used in manual assertion

FB:FBgn0005631

F

Seeded From UniProt

complete

involved_in

GO:0003151

outflow tract morphogenesis

PMID:18250318[5]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0016199

axon midline choice point recognition

PMID:17409115[6]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0008201

heparin binding

PMID:17062560[7]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0048495

Roundabout binding

PMID:17062560[7]

ECO:0000353

physical interaction evidence used in manual assertion

FB:FBgn0005631

F

Seeded From UniProt

complete

part_of

GO:0071666

Slit-Robo signaling complex

PMID:17062560[7]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0016199

axon midline choice point recognition

PMID:17114045[8]

ECO:0000316

genetic interaction evidence used in manual assertion

FB:FBgn0001965

P

Seeded From UniProt

complete

involved_in

GO:0035050

embryonic heart tube development

PMID:16888037[9]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0022409

positive regulation of cell-cell adhesion

PMID:16888037[9]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0016199

axon midline choice point recognition

PMID:17049509[10]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0016199

axon midline choice point recognition

PMID:17121810[11]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0035050

embryonic heart tube development

PMID:16516189[12]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0035050

embryonic heart tube development

PMID:16360689[13]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0007432

salivary gland boundary specification

PMID:15950216[14]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0001764

neuron migration

PMID:15296748[15]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0016199

axon midline choice point recognition

PMID:15147761[16]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0007427

epithelial cell migration, open tracheal system

PMID:15229181[17]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0016199

axon midline choice point recognition

PMID:12973825[18]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:2000274

regulation of epithelial cell migration, open tracheal system

PMID:12397103[19]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0010632

regulation of epithelial cell migration

PMID:12397103[19]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0007411

axon guidance

PMID:12040052[20]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0030182

neuron differentiation

PMID:11688564[21]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0007411

axon guidance

PMID:11404414[22]

ECO:0000353

physical interaction evidence used in manual assertion

FB:FBgn0005631

P

Seeded From UniProt

complete

involved_in

GO:0007411

axon guidance

PMID:11404414[22]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0007411

axon guidance

PMID:11404414[22]

ECO:0000316

genetic interaction evidence used in manual assertion

FB:FBgn0005631

P

Seeded From UniProt

complete

involved_in

GO:0007509

mesoderm migration involved in gastrulation

PMID:11326102[23]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0007411

axon guidance

PMID:10102267[24]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0008078

mesodermal cell migration

PMID:10102267[24]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0035385

Roundabout signaling pathway

PMID:10102267[24]

ECO:0000316

genetic interaction evidence used in manual assertion

FB:FBgn0005631

P

Seeded From UniProt

complete

involved_in

GO:0007411

axon guidance

PMID:28634210[25]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0030335

positive regulation of cell migration

PMID:27618756[26]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0007411

axon guidance

PMID:27780041[27]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0016201

synaptic target inhibition

PMID:27780041[27]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0005509

calcium ion binding

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR001881
InterPro:IPR018097

F

Seeded From UniProt

complete

part_of

GO:0005886

plasma membrane

Reactome:R-NUL-428884
Reactome:R-DME-434963
Reactome:R-DME-428953
Reactome:R-DME-428887
Reactome:R-DME-428532
Reactome:R-DME-428529
Reactome:R-DME-428528
Reactome:R-DME-428527
Reactome:R-DME-428523
Reactome:R-DME-428520

ECO:0000304

author statement supported by traceable reference used in manual assertion










C

Seeded From UniProt

complete

involved_in

GO:0007275

multicellular organism development

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0217

P

Seeded From UniProt

complete

part_of

GO:0005576

extracellular region

GO_REF:0000037
GO_REF:0000039

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0964
UniProtKB-SubCell:SL-0243

C

Seeded From UniProt

complete

involved_in

GO:0030154

cell differentiation

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0221

P

Seeded From UniProt

complete

involved_in

GO:0007399

nervous system development

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0524

P

Seeded From UniProt

complete

Notes

References

See Help:References for how to manage references in GONUTS.

  1. 1.0 1.1 1.2 1.3 Rothberg, JM et al. (1990) slit: an extracellular protein necessary for development of midline glia and commissural axon pathways contains both EGF and LRR domains. Genes Dev. 4 2169-87 PubMed GONUTS page
  2. 2.0 2.1 Weyers, JJ et al. (2011) A genetic screen for mutations affecting gonad formation in Drosophila reveals a role for the slit/robo pathway. Dev. Biol. 353 217-28 PubMed GONUTS page
  3. Dimitrova, S et al. (2008) Slit and Robo regulate dendrite branching and elongation of space-filling neurons in Drosophila. Dev. Biol. 324 18-30 PubMed GONUTS page
  4. Fukuhara, N et al. (2008) Structural and functional analysis of slit and heparin binding to immunoglobulin-like domains 1 and 2 of Drosophila Robo. J. Biol. Chem. 283 16226-34 PubMed GONUTS page
  5. Zmojdzian, M et al. (2008) Cellular components and signals required for the cardiac outflow tract assembly in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 105 2475-80 PubMed GONUTS page
  6. Lee, S et al. (2007) The F-actin-microtubule crosslinker Shot is a platform for Krasavietz-mediated translational regulation of midline axon repulsion. Development 134 1767-77 PubMed GONUTS page
  7. 7.0 7.1 7.2 Hussain, SA et al. (2006) A molecular mechanism for the heparan sulfate dependence of slit-robo signaling. J. Biol. Chem. 281 39693-8 PubMed GONUTS page
  8. Yang, L & Bashaw, GJ (2006) Son of sevenless directly links the Robo receptor to rac activation to control axon repulsion at the midline. Neuron 52 595-607 PubMed GONUTS page
  9. 9.0 9.1 Santiago-Martínez, E et al. (2006) Lateral positioning at the dorsal midline: Slit and Roundabout receptors guide Drosophila heart cell migration. Proc. Natl. Acad. Sci. U.S.A. 103 12441-6 PubMed GONUTS page
  10. Simionato, E et al. (2007) The Drosophila RNA-binding protein ELAV is required for commissural axon midline crossing via control of commissureless mRNA expression in neurons. Dev. Biol. 301 166-77 PubMed GONUTS page
  11. Garbe, DS et al. (2007) beta-Spectrin functions independently of Ankyrin to regulate the establishment and maintenance of axon connections in the Drosophila embryonic CNS. Development 134 273-84 PubMed GONUTS page
  12. MacMullin, A & Jacobs, JR (2006) Slit coordinates cardiac morphogenesis in Drosophila. Dev. Biol. 293 154-64 PubMed GONUTS page
  13. Qian, L et al. (2005) Slit and Robo control cardiac cell polarity and morphogenesis. Curr. Biol. 15 2271-8 PubMed GONUTS page
  14. Kolesnikov, T & Beckendorf, SK (2005) NETRIN and SLIT guide salivary gland migration. Dev. Biol. 284 102-11 PubMed GONUTS page
  15. Kraut, R & Zinn, K (2004) Roundabout 2 regulates migration of sensory neurons by signaling in trans. Curr. Biol. 14 1319-29 PubMed GONUTS page
  16. Orgogozo, V et al. (2004) Slit-Robo signalling prevents sensory cells from crossing the midline in Drosophila. Mech. Dev. 121 427-36 PubMed GONUTS page
  17. Gallio, M et al. (2004) Rhomboid 3 orchestrates Slit-independent repulsion of tracheal branches at the CNS midline. Development 131 3605-14 PubMed GONUTS page
  18. Hsouna, A et al. (2003) Abelson tyrosine kinase is required to transduce midline repulsive cues. J. Neurobiol. 57 15-30 PubMed GONUTS page
  19. 19.0 19.1 Englund, C et al. (2002) Attractive and repulsive functions of Slit are mediated by different receptors in the Drosophila trachea. Development 129 4941-51 PubMed GONUTS page
  20. Stevens, A & Jacobs, JR (2002) Integrins regulate responsiveness to slit repellent signals. J. Neurosci. 22 4448-55 PubMed GONUTS page
  21. Mehta, B & Bhat, KM (2001) Slit signaling promotes the terminal asymmetric division of neural precursor cells in the Drosophila CNS. Development 128 3161-8 PubMed GONUTS page
  22. 22.0 22.1 22.2 Battye, R et al. (2001) Repellent signaling by Slit requires the leucine-rich repeats. J. Neurosci. 21 4290-8 PubMed GONUTS page
  23. Kramer, SG et al. (2001) Switching repulsion to attraction: changing responses to slit during transition in mesoderm migration. Science 292 737-40 PubMed GONUTS page
  24. 24.0 24.1 24.2 Kidd, T et al. (1999) Slit is the midline repellent for the robo receptor in Drosophila. Cell 96 785-94 PubMed GONUTS page
  25. Manavalan, MA et al. (2017) The glycosylation pathway is required for the secretion of Slit and for the maintenance of the Slit receptor Robo on axons. Sci Signal 10 PubMed GONUTS page
  26. Raza, Q & Jacobs, JR (2016) Guidance signalling regulates leading edge behaviour during collective cell migration of cardiac cells in Drosophila. Dev. Biol. 419 285-297 PubMed GONUTS page
  27. 27.0 27.1 Oliva, C et al. (2016) Regulation of Drosophila Brain Wiring by Neuropil Interactions via a Slit-Robo-RPTP Signaling Complex. Dev. Cell 39 267-278 PubMed GONUTS page