DROME:GRK

From GONUTS
Jump to: navigation, search
Species (Taxon ID) Drosophila melanogaster (Fruit fly). (7227)
Gene Name(s) grk
Protein Name(s) Protein gurken
External Links
UniProt P42287
EMBL L22531
AF223394
AE014134
AY051814
PIR A48844
RefSeq NP_476568.2
UniGene Dm.355
ProteinModelPortal P42287
SMR P42287
BioGrid 60293
DIP DIP-20922N
IntAct P42287
MINT MINT-320623
STRING 7227.FBpp0079313
EnsemblMetazoa FBtr0079708
GeneID 34171
KEGG dme:Dmel_CG17610
UCSC CG17610-RA
CTD 34171
FlyBase FBgn0001137
eggNOG NOG329056
InParanoid P42287
KO K02447
OMA QQLHLHK
OrthoDB EOG7S4X7H
PhylomeDB P42287
SignaLink P42287
GenomeRNAi 34171
NextBio 787225
PMAP-CutDB P42287
Proteomes UP000000803
Bgee P42287
GO GO:0005783
GO:0005576
GO:0000139
GO:0016021
GO:0005886
GO:0005154
GO:0030714
GO:0009952
GO:0007298
GO:0090110
GO:0001709
GO:0001708
GO:0030381
GO:0046843
GO:0008069
GO:0000578
GO:0007173
GO:0030722
GO:0008314
GO:0008070
GO:0007314
GO:0007309
GO:0007310
GO:0016325
InterPro IPR000742
IPR013032
SMART SM00181
PROSITE PS00022
PS50026

Annotations

Qualifier GO ID GO term name Reference Evidence Code with/from Aspect Notes Status
GO:0051702

interaction with symbiont

PMID:22193955[1]

IDA: Inferred from Direct Assay

P

Fig.1,Wolbachia titer is affected by the host grk gene in stage 10A oocytes.Fig.2. Host grk dosage affects Wolbachia titer in stage 10A nurse cells.Fig.3.Wolbachia titer is affected by grk at stage 2–3 of oogenesis

complete
CACAO 8130

GO:0000139

Golgi membrane

PMID:16396907[2]

IMP: Inferred from Mutant Phenotype

C

Seeded From UniProt

complete

GO:0000578

embryonic axis specification

PMID:11700288[3]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0001708

cell fate specification

PMID:12194841[4]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0001709

cell fate determination

PMID:10449356[5]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0005154

epidermal growth factor receptor binding

PMID:10449356[5]

NAS: Non-traceable Author Statement

F

Seeded From UniProt

complete

GO:0005154

epidermal growth factor receptor binding

PMID:11369216[6]

NAS: Non-traceable Author Statement

F

Seeded From UniProt

complete

GO:0005154

epidermal growth factor receptor binding

PMID:12648473[7]

TAS: Traceable Author Statement

F

Seeded From UniProt

complete

GO:0005154

epidermal growth factor receptor binding

PMID:9642168[8]

NAS: Non-traceable Author Statement

F

Seeded From UniProt

complete

GO:0005515

protein binding

PMID:16396907[2]

IPI: Inferred from Physical Interaction

UniProtKB:P49858

F

Seeded From UniProt

complete

GO:0005576

extracellular region

PMID:11700288[3]

NAS: Non-traceable Author Statement

C

Seeded From UniProt

complete

GO:0005783

endoplasmic reticulum

PMID:11700288[3]

TAS: Traceable Author Statement

C

Seeded From UniProt

complete

GO:0005886

plasma membrane

GO_REF:0000037

IEA: Inferred from Electronic Annotation

UniProtKB-KW:KW-1003

C

Seeded From UniProt

complete

GO:0005886

plasma membrane

GO_REF:0000039

IEA: Inferred from Electronic Annotation

UniProtKB-SubCell:SL-0039

C

Seeded From UniProt

complete

GO:0005886

plasma membrane

PMID:16396907[2]

IDA: Inferred from Direct Assay

C

Seeded From UniProt

complete

GO:0007173

epidermal growth factor receptor signaling pathway

PMID:11369216[6]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0007173

epidermal growth factor receptor signaling pathway

PMID:12027434[9]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0007275

multicellular organismal development

GO_REF:0000037

IEA: Inferred from Electronic Annotation

UniProtKB-KW:KW-0217

P

Seeded From UniProt

complete

GO:0007298

border follicle cell migration

PMID:11141565[10]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0007298

border follicle cell migration

PMID:12885551[11]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007298

border follicle cell migration

PMID:16054027[12]

IGI: Inferred from Genetic Interaction

FB:FBgn0020224

P

Seeded From UniProt

complete

GO:0007298

border follicle cell migration

PMID:16712835[13]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0007309

oocyte axis specification

PMID:10021357[14]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0007309

oocyte axis specification

PMID:11131529[15]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007309

oocyte axis specification

PMID:11700288[3]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007310

oocyte dorsal/ventral axis specification

PMID:10878576[16]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007310

oocyte dorsal/ventral axis specification

PMID:11369216[6]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0007310

oocyte dorsal/ventral axis specification

PMID:12441250[17]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007310

oocyte dorsal/ventral axis specification

PMID:9642168[8]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0007314

oocyte anterior/posterior axis specification

PMID:10449356[5]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007314

oocyte anterior/posterior axis specification

PMID:10878576[16]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0007314

oocyte anterior/posterior axis specification

PMID:11131516[18]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007314

oocyte anterior/posterior axis specification

PMID:11369216[6]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0007314

oocyte anterior/posterior axis specification

PMID:12441250[17]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0007314

oocyte anterior/posterior axis specification

PMID:9642168[8]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0008069

dorsal/ventral axis specification, ovarian follicular epithelium

PMID:10449356[5]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0008069

dorsal/ventral axis specification, ovarian follicular epithelium

PMID:10822261[19]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0008069

dorsal/ventral axis specification, ovarian follicular epithelium

PMID:12027434[9]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0008070

maternal determination of dorsal/ventral axis, ovarian follicular epithelium, germ-line encoded

PMID:3107840[20]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0008314

gurken signaling pathway

PMID:12648473[7]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0009952

anterior/posterior pattern specification

PMID:9988212[21]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0016020

membrane

GO_REF:0000037

IEA: Inferred from Electronic Annotation

UniProtKB-KW:KW-0472

C

Seeded From UniProt

complete

GO:0016021

integral component of membrane

GO_REF:0000037

IEA: Inferred from Electronic Annotation

UniProtKB-KW:KW-0812

C

Seeded From UniProt

complete

GO:0016325

oocyte microtubule cytoskeleton organization

PMID:16319114[22]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0030154

cell differentiation

GO_REF:0000037

IEA: Inferred from Electronic Annotation

UniProtKB-KW:KW-0221

P

Seeded From UniProt

complete

GO:0030381

chorion-containing eggshell pattern formation

PMID:1783295[23]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0030714

anterior/posterior axis specification, follicular epithelium

PMID:11253649[24]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0030714

anterior/posterior axis specification, follicular epithelium

PMID:12747848[25]

TAS: Traceable Author Statement

P

Seeded From UniProt

complete

GO:0030722

establishment of oocyte nucleus localization involved in oocyte dorsal/ventral axis specification

PMID:15829517[26]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0046843

dorsal appendage formation

PMID:10822261[19]

NAS: Non-traceable Author Statement

P

Seeded From UniProt

complete

GO:0046843

dorsal appendage formation

PMID:25468939[27]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

GO:0048477

oogenesis

GO_REF:0000037

IEA: Inferred from Electronic Annotation

UniProtKB-KW:KW-0896

P

Seeded From UniProt

complete

GO:0090110

cargo loading into COPII-coated vesicle

PMID:16396907[2]

IMP: Inferred from Mutant Phenotype

P

Seeded From UniProt

complete

Notes

References

See Help:References for how to manage references in GONUTS.

  1. Serbus, LR et al. (2011) A feedback loop between Wolbachia and the Drosophila gurken mRNP complex influences Wolbachia titer. J. Cell. Sci. 124 4299-308 PubMed GONUTS page
  2. 2.0 2.1 2.2 2.3 Bökel, C et al. (2006) Drosophila Cornichon acts as cargo receptor for ER export of the TGFalpha-like growth factor Gurken. Development 133 459-70 PubMed GONUTS page
  3. 3.0 3.1 3.2 3.3 Johnstone, O & Lasko, P (2001) Translational regulation and RNA localization in Drosophila oocytes and embryos. Annu. Rev. Genet. 35 365-406 PubMed GONUTS page
  4. Hombría, JC & Brown, S (2002) The fertile field of Drosophila Jak/STAT signalling. Curr. Biol. 12 R569-75 PubMed GONUTS page
  5. 5.0 5.1 5.2 5.3 van Eeden, F & St Johnston, D (1999) The polarisation of the anterior-posterior and dorsal-ventral axes during Drosophila oogenesis. Curr. Opin. Genet. Dev. 9 396-404 PubMed GONUTS page
  6. 6.0 6.1 6.2 6.3 Bogdan, S & Klämbt, C (2001) Epidermal growth factor receptor signaling. Curr. Biol. 11 R292-5 PubMed GONUTS page
  7. 7.0 7.1 Shilo, BZ (2003) Signaling by the Drosophila epidermal growth factor receptor pathway during development. Exp. Cell Res. 284 140-9 PubMed GONUTS page
  8. 8.0 8.1 8.2 Cooperstock, RL & Lipshitz, HD (1997) Control of mRNA stability and translation during Drosophila development. Semin. Cell Dev. Biol. 8 541-9 PubMed GONUTS page
  9. 9.0 9.1 Stathopoulos, A & Levine, M (2002) Dorsal gradient networks in the Drosophila embryo. Dev. Biol. 246 57-67 PubMed GONUTS page
  10. Duchek, P & Rørth, P (2001) Guidance of cell migration by EGF receptor signaling during Drosophila oogenesis. Science 291 131-3 PubMed GONUTS page
  11. Ribeiro, C et al. (2003) Signaling systems, guided cell migration, and organogenesis: insights from genetic studies in Drosophila. Dev. Biol. 260 1-8 PubMed GONUTS page
  12. Jékely, G et al. (2005) Regulators of endocytosis maintain localized receptor tyrosine kinase signaling in guided migration. Dev. Cell 9 197-207 PubMed GONUTS page
  13. McDonald, JA et al. (2006) Multiple EGFR ligands participate in guiding migrating border cells. Dev. Biol. 296 94-103 PubMed GONUTS page
  14. Morris, J & Lehmann, R (1999) Drosophila oogenesis: versatile spn doctors. Curr. Biol. 9 R55-8 PubMed GONUTS page
  15. Deng, W & Lin, H (2001) Asymmetric germ cell division and oocyte determination during Drosophila oogenesis. Int. Rev. Cytol. 203 93-138 PubMed GONUTS page
  16. 16.0 16.1 Martín-Blanco, E (2000) p38 MAPK signalling cascades: ancient roles and new functions. Bioessays 22 637-45 PubMed GONUTS page
  17. 17.0 17.1 Farina, KL & Singer, RH (2002) The nuclear connection in RNA transport and localization. Trends Cell Biol. 12 466-72 PubMed GONUTS page
  18. Mahowald, AP (2001) Assembly of the Drosophila germ plasm. Int. Rev. Cytol. 203 187-213 PubMed GONUTS page
  19. 19.0 19.1 Dobens, LL & Raftery, LA (2000) Integration of epithelial patterning and morphogenesis in Drosophila ovarian follicle cells. Dev. Dyn. 218 80-93 PubMed GONUTS page
  20. Schüpbach, T (1987) Germ line and soma cooperate during oogenesis to establish the dorsoventral pattern of egg shell and embryo in Drosophila melanogaster. Cell 49 699-707 PubMed GONUTS page
  21. Wylie, C (1999) Germ cells. Cell 96 165-74 PubMed GONUTS page
  22. Januschke, J et al. (2006) The centrosome-nucleus complex and microtubule organization in the Drosophila oocyte. Development 133 129-39 PubMed GONUTS page
  23. Schüpbach, T & Wieschaus, E (1991) Female sterile mutations on the second chromosome of Drosophila melanogaster. II. Mutations blocking oogenesis or altering egg morphology. Genetics 129 1119-36 PubMed GONUTS page
  24. McNeill, H (2000) Sticking together and sorting things out: adhesion as a force in development. Nat. Rev. Genet. 1 100-8 PubMed GONUTS page
  25. Denef, N & Schüpbach, T (2003) Patterning: JAK-STAT signalling in the Drosophila follicular epithelium. Curr. Biol. 13 R388-90 PubMed GONUTS page
  26. Cáceres, L & Nilson, LA (2005) Production of gurken in the nurse cells is sufficient for axis determination in the Drosophila oocyte. Development 132 2345-53 PubMed GONUTS page
  27. Niepielko, MG & Yakoby, N (2014) Evolutionary changes in TGFα distribution underlie morphological diversity in eggshells from Drosophila species. Development 141 4710-5 PubMed GONUTS page