GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

YEAST:XRS2

From GONUTS
Jump to: navigation, search
Species (Taxon ID) Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast). (559292)
Gene Name(s) XRS2
Protein Name(s) DNA repair protein XRS2
External Links
UniProt P33301
EMBL L22856
U28373
X80642
BK006938
PIR S61164
RefSeq NP_010657.3
ProteinModelPortal P33301
BioGrid 32428
DIP DIP-2420N
IntAct P33301
MINT MINT-679297
iPTMnet P33301
MaxQB P33301
PRIDE P33301
EnsemblFungi YDR369C
GeneID 851975
KEGG sce:YDR369C
EuPathDB FungiDB:YDR369C
SGD S000002777
InParanoid P33301
KO K10868
OMA ACNDINI
OrthoDB EOG092C0KCP
BioCyc YEAST:G3O-29919-MONOMER
Reactome [www.reactome.org/content/detail/R-SCE-912446 R-SCE-912446]
PRO PR:P33301
Proteomes UP000002311
GO GO:0030870
GO:0005654
GO:0005634
GO:0003677
GO:0003691
GO:0051880
GO:0030674
GO:0043047
GO:0042162
GO:0006284
GO:0006303
GO:0035753
GO:0042138
GO:0097552
GO:0030435
GO:0000723
Gene3D 2.60.200.20
InterPro IPR000253
IPR008984
Pfam PF00498
SUPFAM SSF49879

Annotations

Qualifier GO ID GO term name Reference ECO ID ECO term name with/from Aspect Extension Notes Status
GO:0006303

double-strand break repair via nonhomologous end joining

PMID:22746018[1]

ECO:0000315

P

in the absence Xrs2, it won't result NHEJ (figure 2E)

complete
CACAO 12498

GO:0006303

double-strand break repair via nonhomologous end joining

PMID:27746018[2]

ECO:0000315

P

Figure 2 shows Xrs2 is Required for End Joining and Tel1 Signaling Functions of the MRX Complex in Saccharomyces cerevisiae

complete
CACAO 12767

involved_in

GO:0035753

maintenance of DNA trinucleotide repeats

PMID:27173583[3]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0000723

telomere maintenance

PMID:9501103[4]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006303

double-strand break repair via nonhomologous end joining

PMID:9501103[4]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0097552

mitochondrial double-strand break repair via homologous recombination

PMID:22214610[5]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0051880

G-quadruplex DNA binding

PMID:17698079[6]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0043047

single-stranded telomeric DNA binding

PMID:17698079[6]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0042162

telomeric DNA binding

PMID:15721260[7]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0042138

meiotic DNA double-strand break formation

PMID:15548595[8]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0030870

Mre11 complex

PMID:15548595[8]

ECO:0000353

physical interaction evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0030870

Mre11 complex

PMID:9845372[9]

ECO:0000353

physical interaction evidence used in manual assertion

C

Seeded From UniProt

complete

enables

GO:0030674

protein binding, bridging

PMID:14522986[10]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0030435

sporulation resulting in formation of a cellular spore

PMID:15548595[8]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006303

double-strand break repair via nonhomologous end joining

PMID:12399380[11]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006284

base-excision repair

PMID:20040573[12]

ECO:0000316

genetic interaction evidence used in manual assertion

SGD:S000000013
SGD:S000001597
SGD:S000005403

P

Seeded From UniProt

complete

involved_in

GO:0006284

base-excision repair

PMID:20040573[12]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0005634

nucleus

PMID:9845372[9]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

enables

GO:0003691

double-stranded telomeric DNA binding

PMID:17698079[6]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0003677

DNA binding

PMID:14522986[10]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0000723

telomere maintenance

PMID:15548595[8]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0005654

nucleoplasm

Reactome:R-SCE-981784

ECO:0000304

author statement supported by traceable reference used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0006974

cellular response to DNA damage stimulus

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0227

P

Seeded From UniProt

complete

involved_in

GO:0006281

DNA repair

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0234

P

Seeded From UniProt

complete

involved_in

GO:0051321

meiotic cell cycle

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0469

P

Seeded From UniProt

complete

Notes

References

See Help:References for how to manage references in GONUTS.

  1. Kobayashi, Y (2012) [Effect of adding phenylephrine on spinal anesthesia with tetracaine in elderly patients]. Masui 61 579-82 PubMed GONUTS page
  2. Oh, J et al. (2016) Xrs2 Dependent and Independent Functions of the Mre11-Rad50 Complex. Mol. Cell 64 405-415 PubMed GONUTS page
  3. Ye, Y et al. (2016) The Saccharomyces cerevisiae Mre11-Rad50-Xrs2 complex promotes trinucleotide repeat expansions independently of homologous recombination. DNA Repair (Amst.) 43 1-8 PubMed GONUTS page
  4. 4.0 4.1 Boulton, SJ & Jackson, SP (1998) Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J. 17 1819-28 PubMed GONUTS page
  5. Kalifa, L et al. (2012) Mitochondrial genome maintenance: roles for nuclear nonhomologous end-joining proteins in Saccharomyces cerevisiae. Genetics 190 951-64 PubMed GONUTS page
  6. 6.0 6.1 6.2 Ghosal, G & Muniyappa, K (2007) The characterization of Saccharomyces cerevisiae Mre11/Rad50/Xrs2 complex reveals that Rad50 negatively regulates Mre11 endonucleolytic but not the exonucleolytic activity. J. Mol. Biol. 372 864-82 PubMed GONUTS page
  7. Takata, H et al. (2005) Late S phase-specific recruitment of Mre11 complex triggers hierarchical assembly of telomere replication proteins in Saccharomyces cerevisiae. Mol. Cell 17 573-83 PubMed GONUTS page
  8. 8.0 8.1 8.2 8.3 Tsukamoto, Y et al. (2005) Xrs2p regulates Mre11p translocation to the nucleus and plays a role in telomere elongation and meiotic recombination. Mol. Biol. Cell 16 597-608 PubMed GONUTS page
  9. 9.0 9.1 Usui, T et al. (1998) Complex formation and functional versatility of Mre11 of budding yeast in recombination. Cell 95 705-16 PubMed GONUTS page
  10. 10.0 10.1 Trujillo, KM et al. (2003) Yeast xrs2 binds DNA and helps target rad50 and mre11 to DNA ends. J. Biol. Chem. 278 48957-64 PubMed GONUTS page
  11. Wilson, TE (2002) A genomics-based screen for yeast mutants with an altered recombination/end-joining repair ratio. Genetics 162 677-88 PubMed GONUTS page
  12. 12.0 12.1 Steininger, S et al. (2010) A novel function for the Mre11-Rad50-Xrs2 complex in base excision repair. Nucleic Acids Res. 38 1853-65 PubMed GONUTS page