GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

DROME:Q7KTX7

From GONUTS
Jump to: navigation, search
Species (Taxon ID) Drosophila melanogaster (Fruit fly). (7227)
Gene Name(s) No Information Provided.
Protein Name(s) CG10523-PB, isoform B (ECO:0000313 with EMBL:AAN12154.1)

FI05213p (ECO:0000313 with EMBL:ACH95278.1) PARKIN (ECO:0000313 with EMBL:AAM18800.2) Parkin, isoform C (ECO:0000313 with EMBL:AAN12155.1)

External Links
UniProt Q7KTX7
EMBL AY093423
AF510072
AE003593
AE014296
BT044504
RefSeq NP_730600.1
NP_730601.1
UniGene Dm.20129
PDB 2LWR
2M48
PDBsum 2LWR
2M48
SMR Q7KTX7
DIP DIP-58616N
IntAct Q7KTX7
EnsemblMetazoa FBtr0078318
FBtr0078319
GeneID 40336
KEGG dme:Dmel_CG10523
UCSC CG10523-RB
CTD 40336
FlyBase FBgn0041100
eggNOG COG5272
GeneTree ENSGT00390000011034
KO K04556
OMA CESLEIA
OrthoDB EOG738054
PhylomeDB Q7KTX7
GenomeRNAi 40336
NextBio 818239
PRO PR:Q7KTX7
Proteomes UP000000803
GO GO:0005737
GO:0005829
GO:0005739
GO:0016874
GO:0004842
GO:0008270
GO:0008344
GO:0000266
GO:0000422
GO:0007005
GO:0046329
GO:0010637
GO:0070050
GO:0048477
GO:0048078
GO:0090141
GO:0051865
GO:0000209
GO:0016567
GO:0042787
GO:1900407
GO:0010821
GO:0006979
GO:0030382
GO:0007283
GO:0055069
InterPro IPR003977
IPR000626
IPR029071
IPR002867
Pfam PF01485
PF00240
PIRSF PIRSF037880
PRINTS PR01475
SMART SM00647
SM00213
SUPFAM SSF54236
PROSITE PS50053

Annotations

Qualifier GO ID GO term name Reference ECO ID ECO term name with/from Aspect Extension Notes Status
GO:0004842

ubiquitin-protein ligase activity

PMID:17456438[1]

ECO:0000314

F

Figure 2

complete
CACAO 3712

GO:0044743

intracellular protein transmembrane import

PMID:20194754[2]

ECO:0000316

UniProtKB:Q0KHV6


P

Figure 2 shows PINK1 is required for Parkin translocation

complete
CACAO 10621

GO:0031398

positive regulation of protein ubiquitination

PMID:20194754[2]

ECO:0000314

P

Figure 4 shows parkin overexpression can cause mfn ubiquitination in the absense of PINK1

complete
CACAO 10622

GO:0090141

positive regulation of mitochondrial fission

PMID:20194754[2]

ECO:0000316

UniProtKB:Q0KHV6


P

Figure 1 shows Parkin and PINK1 activity promotes mitochondrial fission

complete
CACAO 10623

GO:0010637

negative regulation of mitochondrial fusion

PMID:20194754[2]

ECO:0000316

UniProtKB:Q0KHV6


P

Figure 1 shows Parkin and PINK1 activity inhibits mitochondrial fusion

complete
CACAO 10624

involved_in

GO:1904457

positive regulation of neuronal action potential

PMID:28435104[3]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:1904061

positive regulation of locomotor rhythm

PMID:28435104[3]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0004842

ubiquitin-protein transferase activity

PMID:17456438[1]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0048078

positive regulation of compound eye pigmentation

PMID:19692353[4]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:1900407

regulation of cellular response to oxidative stress

PMID:21873635[5]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

FB:FBgn0041100
PANTHER:PTN000188399
UniProtKB:O60260

P

Seeded From UniProt

complete

enables

GO:0061630

ubiquitin protein ligase activity

PMID:21873635[5]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

FB:FBgn0017418
FB:FBgn0041100
MGI:MGI:1355296
PANTHER:PTN000188395
TAIR:locus:2057401
UniProtKB:O60260
UniProtKB:P50876

F

Seeded From UniProt

complete

involved_in

GO:0042981

regulation of apoptotic process

PMID:21873635[5]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

PANTHER:PTN000188399
ZFIN:ZDB-GENE-050417-109

P

Seeded From UniProt

complete

involved_in

GO:0032436

positive regulation of proteasomal ubiquitin-dependent protein catabolic process

PMID:21873635[5]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

MGI:MGI:1355296
PANTHER:PTN000188395

P

Seeded From UniProt

complete

enables

GO:0031624

ubiquitin conjugating enzyme binding

PMID:21873635[5]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

FB:FBgn0017418
FB:FBgn0041100
PANTHER:PTN000188395
UniProtKB:O60260
UniProtKB:O95376
UniProtKB:Q9Y4X5
WB:WBGene00003967

F

Seeded From UniProt

complete

involved_in

GO:0010821

regulation of mitochondrion organization

PMID:21873635[5]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

FB:FBgn0041100
PANTHER:PTN000188399
UniProtKB:O60260

P

Seeded From UniProt

complete

involved_in

GO:0006511

ubiquitin-dependent protein catabolic process

PMID:21873635[5]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

FB:FBgn0017418
FB:FBgn0041100
MGI:MGI:1344361
MGI:MGI:1344363
PANTHER:PTN000188395
UniProtKB:O60260
UniProtKB:O95376
UniProtKB:Q7Z419

P

Seeded From UniProt

complete

part_of

GO:0005829

cytosol

PMID:21873635[5]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

PANTHER:PTN000188399
RGD:61797
UniProtKB:O60260

C

Seeded From UniProt

complete

part_of

GO:0005794

Golgi apparatus

PMID:21873635[5]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

PANTHER:PTN000188399
UniProtKB:O60260

C

Seeded From UniProt

complete

part_of

GO:0005783

endoplasmic reticulum

PMID:21873635[5]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

PANTHER:PTN000188399
RGD:61797
UniProtKB:O60260

C

Seeded From UniProt

complete

part_of

GO:0005739

mitochondrion

PMID:21873635[5]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

FB:FBgn0041100
MGI:MGI:1355296
PANTHER:PTN000188399
RGD:61797
UniProtKB:O60260

C

Seeded From UniProt

complete

part_of

GO:0005737

cytoplasm

PMID:21873635[5]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

FB:FBgn0017418
FB:FBgn0041100
MGI:MGI:1355296
PANTHER:PTN000188395
RGD:61797
UniProtKB:O60260
UniProtKB:O95376
UniProtKB:Q7Z419
UniProtKB:Q9UBS8
UniProtKB:Q9Y4X5
WB:WBGene00003967
WB:WBGene00016158

C

Seeded From UniProt

complete

involved_in

GO:0001933

negative regulation of protein phosphorylation

PMID:21873635[5]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

PANTHER:PTN000188399
UniProtKB:O60260

P

Seeded From UniProt

complete

involved_in

GO:0000422

autophagy of mitochondrion

PMID:21873635[5]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

FB:FBgn0041100
PANTHER:PTN000188399
RGD:61797
UniProtKB:O60260

P

Seeded From UniProt

complete

involved_in

GO:0000209

protein polyubiquitination

PMID:21873635[5]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

FB:FBgn0041100
PANTHER:PTN000188395
UniProtKB:O60260
UniProtKB:O95376

P

Seeded From UniProt

complete

part_of

GO:0000151

ubiquitin ligase complex

PMID:21873635[5]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

PANTHER:PTN000188395
UniProtKB:O60260
WB:WBGene00003967

C

Seeded From UniProt

complete

involved_in

GO:0000266

mitochondrial fission

PMID:18230723[6]

ECO:0000316

genetic interaction evidence used in manual assertion

FB:FBgn0261276

P

Seeded From UniProt

complete

involved_in

GO:0070050

neuron cellular homeostasis

PMID:17687034[7]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0007005

mitochondrion organization

PMID:17687034[7]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0008344

adult locomotory behavior

PMID:17687034[7]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0000209

protein polyubiquitination

PMID:17456438[1]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0016567

protein ubiquitination

PMID:17456438[1]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0061630

ubiquitin protein ligase activity

PMID:17456438[1]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0031624

ubiquitin conjugating enzyme binding

PMID:17456438[1]

ECO:0000353

physical interaction evidence used in manual assertion

HGNC:12490

F

Seeded From UniProt

complete

involved_in

GO:0051865

protein autoubiquitination

PMID:17456438[1]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0007005

mitochondrion organization

PMID:17123504[8]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0007283

spermatogenesis

PMID:17123504[8]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006979

response to oxidative stress

PMID:15911761[9]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0046329

negative regulation of JNK cascade

PMID:16002472[10]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0007005

mitochondrion organization

PMID:12642658[11]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0007005

mitochondrion organization

PMID:24852371[12]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0008344

adult locomotory behavior

PMID:24852371[12]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0016567

protein ubiquitination

PMID:24898855[13]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0000422

autophagy of mitochondrion

PMID:24192653[14]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0055069

zinc ion homeostasis

PMID:20302514[15]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0007283

spermatogenesis

PMID:21383066[16]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006979

response to oxidative stress

PMID:21383066[16]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0048477

oogenesis

PMID:21383066[16]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0005737

cytoplasm

PMID:20869429[17]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0048477

oogenesis

PMID:20869429[17]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:1900407

regulation of cellular response to oxidative stress

PMID:20483372[18]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0046329

negative regulation of JNK cascade

PMID:20496123[19]

ECO:0000316

genetic interaction evidence used in manual assertion

FB:FBgn0010303

P

Seeded From UniProt

complete

involved_in

GO:0046329

negative regulation of JNK cascade

PMID:20496123[19]

ECO:0000316

genetic interaction evidence used in manual assertion

FB:FBgn0000229

P

Seeded From UniProt

complete

involved_in

GO:0006511

ubiquitin-dependent protein catabolic process

PMID:20194754[2]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

colocalizes_with

GO:0005739

mitochondrion

PMID:20194754[2]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0010637

negative regulation of mitochondrial fusion

PMID:20194754[2]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0090141

positive regulation of mitochondrial fission

PMID:20194754[2]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0000422

autophagy of mitochondrion

PMID:20194754[2]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0005737

cytoplasm

PMID:20194754[2]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0010821

regulation of mitochondrion organization

PMID:19546216[20]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0005739

mitochondrion

PMID:18957282[21]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0030382

sperm mitochondrion organization

PMID:18799731[22]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0007005

mitochondrion organization

PMID:18799731[22]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0007005

mitochondrion organization

PMID:18443288[23]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0000266

mitochondrial fission

PMID:18230723[6]

ECO:0000316

genetic interaction evidence used in manual assertion

FB:FBgn0026479

P

Seeded From UniProt

complete

involved_in

GO:0007005

mitochondrion organization

PMID:18230723[6]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0000266

mitochondrial fission

PMID:18230723[6]

ECO:0000316

genetic interaction evidence used in manual assertion

FB:FBgn0029870

P

Seeded From UniProt

complete

involved_in

GO:0008345

larval locomotory behavior

PMID:27430166[24]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006513

protein monoubiquitination

PMID:29689197[25]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0042803

protein homodimerization activity

PMID:29689197[25]

ECO:0000315

mutant phenotype evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0007005

mitochondrion organization

PMID:29456190[26]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0004842

ubiquitin-protein transferase activity

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR003977
InterPro:IPR031127

F

Seeded From UniProt

complete

part_of

GO:0005739

mitochondrion

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR003977

C

Seeded From UniProt

complete

part_of

GO:0005829

cytosol

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR003977

C

Seeded From UniProt

complete

involved_in

GO:0016567

protein ubiquitination

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR031127

P

Seeded From UniProt

complete

enables

GO:0046872

metal ion binding

GO_REF:0000038

ECO:0000323

imported automatically asserted information used in automatic assertion

UniProtKB-KW:KW-0479

F

Seeded From UniProt

complete

enables

GO:0016740

transferase activity

GO_REF:0000038

ECO:0000323

imported automatically asserted information used in automatic assertion

UniProtKB-KW:KW-0808

F

Seeded From UniProt

complete

part_of

GO:0005634

nucleus

GO_REF:0000038

ECO:0000323

imported automatically asserted information used in automatic assertion

UniProtKB-KW:KW-0539

C

Seeded From UniProt

complete

enables

GO:0004842

ubiquitin-protein transferase activity

GO_REF:0000104

ECO:0000256

match to sequence model evidence used in automatic assertion

UniRule:UR000141802

F

Seeded From UniProt

complete

involved_in

GO:0016567

protein ubiquitination

GO_REF:0000104

ECO:0000256

match to sequence model evidence used in automatic assertion

UniRule:UR000141802

P

Seeded From UniProt

complete

part_of

GO:0000151

ubiquitin ligase complex

GO_REF:0000104

ECO:0000256

match to sequence model evidence used in automatic assertion

UniRule:UR000141802

C

Seeded From UniProt

complete

involved_in

GO:0016567

protein ubiquitination

GO_REF:0000041

ECO:0000322

imported manually asserted information used in automatic assertion

UniPathway:UPA00143

P

Seeded From UniProt

complete

Notes

References

See Help:References for how to manage references in GONUTS.

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 Bae, YJ et al. (2007) Drosophila melanogaster Parkin ubiquitinates peanut and septin1 as an E3 ubiquitin-protein ligase. Insect Biochem. Mol. Biol. 37 430-9 PubMed GONUTS page
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 Ziviani, E et al. (2010) Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc. Natl. Acad. Sci. U.S.A. 107 5018-23 PubMed GONUTS page
  3. 3.0 3.1 Julienne, H et al. (2017) Drosophila PINK1 and parkin loss-of-function mutants display a range of non-motor Parkinson's disease phenotypes. Neurobiol. Dis. 104 15-23 PubMed GONUTS page
  4. Venderova, K et al. (2009) Leucine-Rich Repeat Kinase 2 interacts with Parkin, DJ-1 and PINK-1 in a Drosophila melanogaster model of Parkinson's disease. Hum. Mol. Genet. 18 4390-404 PubMed GONUTS page
  5. 5.00 5.01 5.02 5.03 5.04 5.05 5.06 5.07 5.08 5.09 5.10 5.11 5.12 5.13 5.14 5.15 Gaudet, P et al. (2011) Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Brief. Bioinformatics 12 449-62 PubMed GONUTS page
  6. 6.0 6.1 6.2 6.3 Poole, AC et al. (2008) The PINK1/Parkin pathway regulates mitochondrial morphology. Proc. Natl. Acad. Sci. U.S.A. 105 1638-43 PubMed GONUTS page
  7. 7.0 7.1 7.2 Wang, C et al. (2007) Drosophila overexpressing parkin R275W mutant exhibits dopaminergic neuron degeneration and mitochondrial abnormalities. J. Neurosci. 27 8563-70 PubMed GONUTS page
  8. 8.0 8.1 Riparbelli, MG & Callaini, G (2007) The Drosophila parkin homologue is required for normal mitochondrial dynamics during spermiogenesis. Dev. Biol. 303 108-20 PubMed GONUTS page
  9. Whitworth, AJ et al. (2005) Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson's disease. Proc. Natl. Acad. Sci. U.S.A. 102 8024-9 PubMed GONUTS page
  10. Cha, GH et al. (2005) Parkin negatively regulates JNK pathway in the dopaminergic neurons of Drosophila. Proc. Natl. Acad. Sci. U.S.A. 102 10345-50 PubMed GONUTS page
  11. Greene, JC et al. (2003) Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc. Natl. Acad. Sci. U.S.A. 100 4078-83 PubMed GONUTS page
  12. 12.0 12.1 Cornelissen, T et al. (2014) The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy. Hum. Mol. Genet. 23 5227-42 PubMed GONUTS page
  13. Yun, J et al. (2014) MUL1 acts in parallel to the PINK1/parkin pathway in regulating mitofusin and compensates for loss of PINK1/parkin. Elife 3 e01958 PubMed GONUTS page
  14. Bhandari, P et al. (2014) Mitochondrial contagion induced by Parkin deficiency in Drosophila hearts and its containment by suppressing mitofusin. Circ. Res. 114 257-65 PubMed GONUTS page
  15. Saini, N & Schaffner, W (2010) Zinc supplement greatly improves the condition of parkin mutant Drosophila. Biol. Chem. 391 513-8 PubMed GONUTS page
  16. 16.0 16.1 16.2 Saini, N et al. (2011) The parkin mutant phenotype in the fly is largely rescued by metal-responsive transcription factor (MTF-1). Mol. Cell. Biol. 31 2151-61 PubMed GONUTS page
  17. 17.0 17.1 Ottone, C et al. (2011) Diminution of eIF4E activity suppresses parkin mutant phenotypes. Gene 470 12-9 PubMed GONUTS page
  18. Saini, N et al. (2010) Extended lifespan of Drosophila parkin mutants through sequestration of redox-active metals and enhancement of anti-oxidative pathways. Neurobiol. Dis. 40 82-92 PubMed GONUTS page
  19. 19.0 19.1 Hwang, S et al. (2010) Parkin suppresses c-Jun N-terminal kinase-induced cell death via transcriptional regulation in Drosophila. Mol. Cells 29 575-80 PubMed GONUTS page
  20. Lutz, AK et al. (2009) Loss of parkin or PINK1 function increases Drp1-dependent mitochondrial fragmentation. J. Biol. Chem. 284 22938-51 PubMed GONUTS page
  21. Kim, Y et al. (2008) PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. Biochem. Biophys. Res. Commun. 377 975-80 PubMed GONUTS page
  22. 22.0 22.1 Deng, H et al. (2008) The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 105 14503-8 PubMed GONUTS page
  23. Yang, Y et al. (2008) Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proc. Natl. Acad. Sci. U.S.A. 105 7070-5 PubMed GONUTS page
  24. Brooks, DS et al. () Optimization of wrMTrck to monitor Drosophila larval locomotor activity. J. Insect Physiol. 93-94 11-17 PubMed GONUTS page
  25. 25.0 25.1 Tan, KL et al. (2018) Ari-1 Regulates Myonuclear Organization Together with Parkin and Is Associated with Aortic Aneurysms. Dev. Cell 45 226-244.e8 PubMed GONUTS page
  26. Tsai, PI et al. (2018) PINK1 Phosphorylates MIC60/Mitofilin to Control Structural Plasticity of Mitochondrial Crista Junctions. Mol. Cell 69 744-756.e6 PubMed GONUTS page