GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

YEAST:SIR4

From GONUTS
Jump to: navigation, search
Species (Taxon ID) Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast). (559292)
Gene Name(s) SIR4 (synonyms: ASD1, STE9, UTH2)
Protein Name(s) Regulatory protein SIR4

Silent information regulator 4

External Links
UniProt P11978
EMBL M37249
U13239
Z48612
BK006938
PIR A29360
RefSeq NP_010513.1
PDB 1NYH
1PL5
4IAO
PDBsum 1NYH
1PL5
4IAO
ProteinModelPortal P11978
SMR P11978
BioGrid 32279
DIP DIP-33N
IntAct P11978
MINT MINT-622754
STRING 4932.YDR227W
MaxQB P11978
PaxDb P11978
PeptideAtlas P11978
EnsemblFungi [example_ID YDR227W]
GeneID 851813
KEGG sce:YDR227W
CYGD YDR227w
SGD S000002635
eggNOG NOG38871
InParanoid P11978
KO K11123
OMA TNDICSV
OrthoDB EOG70GMTK
BioCyc YEAST:G3O-29806-MONOMER
EvolutionaryTrace P11978
NextBio 969671
Proteomes UP000002311
ExpressionAtlas P11978
Genevestigator P11978
GO GO:0005677
GO:0000784
GO:0005724
GO:0003690
GO:0031491
GO:0006342
GO:0001308
GO:0006351

Annotations

Qualifier GO ID GO term name Reference ECO ID ECO term name with/from Aspect Extension Notes Status
GO:0007569

cell aging

PMID:10521401[1]

ECO:0000315

P

Fig.1(A)demonstrates that disruption of sir4 resulted in a 20 % decrease in mean life span.

complete

GO:0031453

positive regulation of heterochromatin assembly

PMID:26587833[2]

ECO:0000314

P

Selection of one, two or four low-copy centromeric plasmids containing SIR4 in zygotes increased the amount of Sir4 protein in these cells and significantly increased the speed of establishment in the single cell assay(Figure2B-D and 3)

complete
CACAO 11474

GO:0035389

establishment of chromatin silencing at silent mating-type cassette

PMID:26587833[2]

ECO:0000315

P

Selection of one, two or four low-copy centromeric plasmids containing SIR4 in zygotes increased the amount of Sir4 protein in these cells and significantly increased the speed of establishment in the single cell assay(Figure 2B-D and 3)

complete
CACAO 11728

involved_in

GO:0097695

establishment of protein-containing complex localization to telomere

PMID:29290466[3]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

has_input:(ComplexPortal:CPX-3298)

Seeded From UniProt

complete

involved_in

GO:0097695

establishment of protein-containing complex localization to telomere

PMID:26218225[4]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

has_input:(GO:0005697)

Seeded From UniProt

complete

involved_in

GO:0034398

telomere tethering at nuclear periphery

PMID:26399229[5]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0000784

nuclear chromosome, telomeric region

PMID:27122604[6]

ECO:0000315

mutant phenotype evidence used in manual assertion

C

adjacent_to:(GO:0034399)

Seeded From UniProt

complete

involved_in

GO:0034398

telomere tethering at nuclear periphery

PMID:27122604[6]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0099114

chromatin silencing at subtelomere

PMID:26587833[2]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0031453

positive regulation of heterochromatin assembly

PMID:26587833[2]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0035389

establishment of chromatin silencing at silent mating-type cassette

PMID:26587833[2]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0032947

protein-containing complex scaffold activity

PMID:12080091[7]

ECO:0000315

mutant phenotype evidence used in manual assertion

F

has_input:(GO:0005677)

Seeded From UniProt

complete

involved_in

GO:0006303

double-strand break repair via nonhomologous end joining

PMID:9501103[8]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006348

chromatin silencing at telomere

PMID:9501103[8]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006348

chromatin silencing at telomere

PMID:1913809[9]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0030466

chromatin silencing at silent mating-type cassette

PMID:3297920[10]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0003690

double-stranded DNA binding

PMID:22654676[11]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0003690

double-stranded DNA binding

PMID:22654676[11]

ECO:0000315

mutant phenotype evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0030466

chromatin silencing at silent mating-type cassette

PMID:22654676[11]

ECO:0000316

genetic interaction evidence used in manual assertion

SGD:S000004897

P

Seeded From UniProt

complete

involved_in

GO:0006348

chromatin silencing at telomere

PMID:22654676[11]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0031491

nucleosome binding

PMID:19217406[12]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0030466

chromatin silencing at silent mating-type cassette

PMID:22654676[11]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0005724

nuclear telomeric heterochromatin

PMID:9000052[13]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0005677

chromatin silencing complex

PMID:9122169[14]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

enables

GO:0003690

double-stranded DNA binding

PMID:19217406[12]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0001308

negative regulation of chromatin silencing involved in replicative cell aging

PMID:9150138[15]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0000784

nuclear chromosome, telomeric region

PMID:9710643[16]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0099115

chromosome, subtelomeric region

GO_REF:0000108

ECO:0000364

evidence based on logical inference from manual annotation used in automatic assertion

GO:0099114

C

Seeded From UniProt

complete

enables

GO:0003677

DNA binding

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0238

F

Seeded From UniProt

complete

part_of

GO:0005634

nucleus

GO_REF:0000037
GO_REF:0000039

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0539
UniProtKB-SubCell:SL-0191

C

Seeded From UniProt

complete

Notes

References

See Help:References for how to manage references in GONUTS.

  1. Kaeberlein, M et al. (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13 2570-80 PubMed GONUTS page
  2. 2.0 2.1 2.2 2.3 2.4 Larin, ML et al. (2015) Competition between Heterochromatic Loci Allows the Abundance of the Silencing Protein, Sir4, to Regulate de novo Assembly of Heterochromatin. PLoS Genet. 11 e1005425 PubMed GONUTS page
  3. Chen, H et al. (2018) Structural Insights into Yeast Telomerase Recruitment to Telomeres. Cell 172 331-343.e13 PubMed GONUTS page
  4. Hass, EP & Zappulla, DC (2015) The Ku subunit of telomerase binds Sir4 to recruit telomerase to lengthen telomeres in S. cerevisiae. Elife 4 PubMed GONUTS page
  5. Guidi, M et al. (2015) Spatial reorganization of telomeres in long-lived quiescent cells. Genome Biol. 16 206 PubMed GONUTS page
  6. 6.0 6.1 Laporte, D et al. (2016) Quiescent Saccharomyces cerevisiae forms telomere hyperclusters at the nuclear membrane vicinity through a multifaceted mechanism involving Esc1, the Sir complex, and chromatin condensation. Mol. Biol. Cell 27 1875-84 PubMed GONUTS page
  7. Luo, K et al. (2002) Rap1-Sir4 binding independent of other Sir, yKu, or histone interactions initiates the assembly of telomeric heterochromatin in yeast. Genes Dev. 16 1528-39 PubMed GONUTS page
  8. 8.0 8.1 Boulton, SJ & Jackson, SP (1998) Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J. 17 1819-28 PubMed GONUTS page
  9. Aparicio, OM et al. (1991) Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell 66 1279-87 PubMed GONUTS page
  10. Rine, J & Herskowitz, I (1987) Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics 116 9-22 PubMed GONUTS page
  11. 11.0 11.1 11.2 11.3 11.4 Kueng, S et al. (2012) Regulating repression: roles for the sir4 N-terminus in linker DNA protection and stabilization of epigenetic states. PLoS Genet. 8 e1002727 PubMed GONUTS page
  12. 12.0 12.1 Martino, F et al. (2009) Reconstitution of yeast silent chromatin: multiple contact sites and O-AADPR binding load SIR complexes onto nucleosomes in vitro. Mol. Cell 33 323-34 PubMed GONUTS page
  13. Strahl-Bolsinger, S et al. (1997) SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast. Genes Dev. 11 83-93 PubMed GONUTS page
  14. Moazed, D et al. (1997) Silent information regulator protein complexes in Saccharomyces cerevisiae: a SIR2/SIR4 complex and evidence for a regulatory domain in SIR4 that inhibits its interaction with SIR3. Proc. Natl. Acad. Sci. U.S.A. 94 2186-91 PubMed GONUTS page
  15. Kennedy, BK et al. (1997) Redistribution of silencing proteins from telomeres to the nucleolus is associated with extension of life span in S. cerevisiae. Cell 89 381-91 PubMed GONUTS page
  16. Bourns, BD et al. (1998) Sir proteins, Rif proteins, and Cdc13p bind Saccharomyces telomeres in vivo. Mol. Cell. Biol. 18 5600-8 PubMed GONUTS page