GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

YEAST:SEN1

From GONUTS
Jump to: navigation, search
Species (Taxon ID) Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast). (559292)
Gene Name(s) SEN1
Protein Name(s) Helicase SEN1

tRNA-splicing endonuclease positive effector

External Links
UniProt Q00416
EMBL U20939
U21094
M74589
BK006945
PIR S53416
RefSeq NP_013534.3
ProteinModelPortal Q00416
SMR Q00416
BioGrid 31689
DIP DIP-881N
IntAct Q00416
MINT MINT-427565
iPTMnet Q00416
MaxQB Q00416
PeptideAtlas Q00416
TopDownProteomics Q00416
EnsemblFungi YLR430W
GeneID 851150
KEGG sce:YLR430W
EuPathDB FungiDB:YLR430W
SGD S000004422
GeneTree ENSGT00830000128421
HOGENOM HOG000246755
InParanoid Q00416
KO K10706
OMA EIIIMSC
OrthoDB EOG70PC5T
BioCyc YEAST:G3O-32489-MONOMER
PRO PR:Q00416
Proteomes UP000002311
GO GO:0005737
GO:0035649
GO:0005634
GO:0005657
GO:0005524
GO:0032575
GO:0008094
GO:0019904
GO:0008186
GO:0017116
GO:0032508
GO:0045005
GO:0006353
GO:0031124
GO:0006378
GO:1990248
GO:0006364
GO:0031126
GO:0016180
GO:0006369
GO:0008033
Gene3D 3.40.50.300
InterPro IPR024481
IPR027417
Pfam PF12726
SUPFAM SSF52540

Annotations

Qualifier GO ID GO term name Reference ECO ID ECO term name with/from Aspect Extension Notes Status
GO:0060257

negative regulation of flocculation

PMID:26364722[1]

ECO:0000315

P

Flocculation was monitored through growth assays and was measured by rate of sedimentation. It was found that the amount of flocculation as well as the rate of flocculation was greater in the SEN1 mutants that in wild type cells (Figure 1A and 1B).

complete
CACAO 12170

enables

GO:0003729

mRNA binding

PMID:23222640[2]

ECO:0007005

high throughput direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0006283

transcription-coupled nucleotide-excision repair

PMID:27179024[3]

ECO:0000316

genetic interaction evidence used in manual assertion

UniProtKB:P06779,UniProtKB:P32914

P

Seeded From UniProt

complete

involved_in

GO:0006283

transcription-coupled nucleotide-excision repair

PMID:27179024[3]

ECO:0000316

genetic interaction evidence used in manual assertion

UniProtKB:P06779,UniProtKB:P40352

P

Seeded From UniProt

complete

involved_in

GO:0006283

transcription-coupled nucleotide-excision repair

PMID:27179024[3]

ECO:0000316

genetic interaction evidence used in manual assertion

UniProtKB:P06779

P

Seeded From UniProt

complete

enables

GO:0033682

ATP-dependent 5'-3' DNA/RNA helicase activity

PMID:26198638[4]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0043141

ATP-dependent 5'-3' DNA helicase activity

PMID:26198638[4]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:1990248

regulation of transcription from RNA polymerase II promoter in response to DNA damage

PMID:23741394[5]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0045005

DNA-dependent DNA replication maintenance of fidelity

PMID:23141540[6]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0035649

Nrd1 complex

PMID:16427013[7]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

enables

GO:0032575

ATP-dependent 5'-3' RNA helicase activity

PMID:10545196[8]

ECO:0000250

sequence similarity evidence used in manual assertion

UniProtKB:Q92355

F

Seeded From UniProt

complete

involved_in

GO:0031126

snoRNA 3'-end processing

PMID:11565036[9]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0031124

mRNA 3'-end processing

PMID:11565036[9]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0019904

protein domain specific binding

PMID:22286094[10]

ECO:0000315

mutant phenotype evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0019904

protein domain specific binding

PMID:22286094[10]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0016180

snRNA processing

PMID:9365256[11]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0008186

RNA-dependent ATPase activity

PMID:10545196[8]

ECO:0000250

sequence similarity evidence used in manual assertion

UniProtKB:Q92355

F

Seeded From UniProt

complete

enables

GO:0008094

DNA-dependent ATPase activity

PMID:10545196[8]

ECO:0000250

sequence similarity evidence used in manual assertion

UniProtKB:Q92355

F

Seeded From UniProt

complete

involved_in

GO:0008033

tRNA processing

PMID:9365256[11]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006378

mRNA polyadenylation

PMID:22123738[12]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006369

termination of RNA polymerase II transcription

PMID:17157256[13]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006364

rRNA processing

PMID:9365256[11]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006353

DNA-templated transcription, termination

PMID:23748379[14]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0005737

cytoplasm

PMID:23222640[2]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0005657

replication fork

PMID:23141540[6]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0005634

nucleus

PMID:23222640[2]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0005634

nucleus

PMID:8544822[15]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0045454

cell redox homeostasis

PMID:27718307[16]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0045005

DNA-dependent DNA replication maintenance of fidelity

PMID:21873635[17]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

PANTHER:PTN002474780
SGD:S000004422

P

Seeded From UniProt

complete

enables

GO:0043141

ATP-dependent 5'-3' DNA helicase activity

PMID:21873635[17]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

PANTHER:PTN002474780
SGD:S000004422

F

Seeded From UniProt

complete

part_of

GO:0035861

site of double-strand break

PMID:21873635[17]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

PANTHER:PTN002474780
PomBase:SPBC29A10.10c

C

Seeded From UniProt

complete

enables

GO:0033682

ATP-dependent 5'-3' DNA/RNA helicase activity

PMID:21873635[17]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

PANTHER:PTN002474780
PomBase:SPAC6G9.10c
SGD:S000004422

F

Seeded From UniProt

complete

enables

GO:0032575

ATP-dependent 5'-3' RNA helicase activity

PMID:21873635[17]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

PANTHER:PTN002474780
PomBase:SPAC6G9.10c

F

Seeded From UniProt

complete

involved_in

GO:0008033

tRNA processing

PMID:21873635[17]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

PANTHER:PTN002474780
SGD:S000004422

P

Seeded From UniProt

complete

involved_in

GO:0006283

transcription-coupled nucleotide-excision repair

PMID:21873635[17]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

PANTHER:PTN002474780
SGD:S000004422

P

Seeded From UniProt

complete

part_of

GO:0005657

replication fork

PMID:21873635[17]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

PANTHER:PTN002474780
SGD:S000004422

C

Seeded From UniProt

complete

part_of

GO:0005634

nucleus

PMID:21873635[17]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

PANTHER:PTN002474780
SGD:S000004422

C

Seeded From UniProt

complete

enables

GO:0003723

RNA binding

PMID:21873635[17]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

PANTHER:PTN000094509
UniProtKB:Q92900
UniProtKB:Q9HCE1

F

Seeded From UniProt

complete

involved_in

GO:0032508

DNA duplex unwinding

GO_REF:0000108

ECO:0000364

evidence based on logical inference from manual annotation used in automatic assertion

GO:0043141

P

Seeded From UniProt

complete

involved_in

GO:0032508

DNA duplex unwinding

GO_REF:0000108

ECO:0000364

evidence based on logical inference from manual annotation used in automatic assertion

GO:0043141

P

Seeded From UniProt

complete

enables

GO:0004386

helicase activity

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0347

F

Seeded From UniProt

complete

part_of

GO:0005634

nucleus

GO_REF:0000037
GO_REF:0000039

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0539
UniProtKB-SubCell:SL-0191

C

Seeded From UniProt

complete

involved_in

GO:0006397

mRNA processing

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0507

P

Seeded From UniProt

complete

involved_in

GO:0006364

rRNA processing

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0698

P

Seeded From UniProt

complete

enables

GO:0016787

hydrolase activity

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0378

F

Seeded From UniProt

complete

involved_in

GO:0008033

tRNA processing

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0819

P

Seeded From UniProt

complete

enables

GO:0005524

ATP binding

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0067

F

Seeded From UniProt

complete

enables

GO:0000166

nucleotide binding

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0547

F

Seeded From UniProt

complete

Notes

References

See Help:References for how to manage references in GONUTS.

  1. Singh, V et al. (2015) Flocculation in Saccharomyces cerevisiae is regulated by RNA/DNA helicase Sen1p. FEBS Lett. 589 3165-74 PubMed GONUTS page
  2. 2.0 2.1 2.2 Mitchell, SF et al. (2013) Global analysis of yeast mRNPs. Nat. Struct. Mol. Biol. 20 127-33 PubMed GONUTS page
  3. 3.0 3.1 3.2 Li, W et al. (2016) Sen1, the yeast homolog of human senataxin, plays a more direct role than Rad26 in transcription coupled DNA repair. Nucleic Acids Res. 44 6794-802 PubMed GONUTS page
  4. 4.0 4.1 Martin-Tumasz, S & Brow, DA (2015) Saccharomyces cerevisiae Sen1 Helicase Domain Exhibits 5'- to 3'-Helicase Activity with a Preference for Translocation on DNA Rather than RNA. J. Biol. Chem. 290 22880-9 PubMed GONUTS page
  5. Golla, U et al. (2013) Sen1p contributes to genomic integrity by regulating expression of ribonucleotide reductase 1 (RNR1) in Saccharomyces cerevisiae. PLoS ONE 8 e64798 PubMed GONUTS page
  6. 6.0 6.1 Alzu, A et al. (2012) Senataxin associates with replication forks to protect fork integrity across RNA-polymerase-II-transcribed genes. Cell 151 835-46 PubMed GONUTS page
  7. Vasiljeva, L & Buratowski, S (2006) Nrd1 interacts with the nuclear exosome for 3' processing of RNA polymerase II transcripts. Mol. Cell 21 239-48 PubMed GONUTS page
  8. 8.0 8.1 8.2 Kim, HD et al. (1999) The sen1(+) gene of Schizosaccharomyces pombe, a homologue of budding yeast SEN1, encodes an RNA and DNA helicase. Biochemistry 38 14697-710 PubMed GONUTS page
  9. 9.0 9.1 Steinmetz, EJ et al. (2001) RNA-binding protein Nrd1 directs poly(A)-independent 3'-end formation of RNA polymerase II transcripts. Nature 413 327-31 PubMed GONUTS page
  10. 10.0 10.1 Chinchilla, K et al. (2012) Interactions of Sen1, Nrd1, and Nab3 with multiple phosphorylated forms of the Rpb1 C-terminal domain in Saccharomyces cerevisiae. Eukaryotic Cell 11 417-29 PubMed GONUTS page
  11. 11.0 11.1 11.2 Ursic, D et al. (1997) The yeast SEN1 gene is required for the processing of diverse RNA classes. Nucleic Acids Res. 25 4778-85 PubMed GONUTS page
  12. Beggs, S et al. (2012) The PolyA tail length of yeast histone mRNAs varies during the cell cycle and is influenced by Sen1p and Rrp6p. Nucleic Acids Res. 40 2700-11 PubMed GONUTS page
  13. Steinmetz, EJ et al. (2006) Genome-wide distribution of yeast RNA polymerase II and its control by Sen1 helicase. Mol. Cell 24 735-46 PubMed GONUTS page
  14. Porrua, O & Libri, D (2013) A bacterial-like mechanism for transcription termination by the Sen1p helicase in budding yeast. Nat. Struct. Mol. Biol. 20 884-91 PubMed GONUTS page
  15. Ursic, D et al. (1995) Inactivation of the yeast Sen1 protein affects the localization of nucleolar proteins. Mol. Gen. Genet. 249 571-84 PubMed GONUTS page
  16. Sariki, SK et al. (2016) Sen1, the homolog of human Senataxin, is critical for cell survival through regulation of redox homeostasis, mitochondrial function, and the TOR pathway in Saccharomyces cerevisiae. FEBS J. 283 4056-4083 PubMed GONUTS page
  17. 17.0 17.1 17.2 17.3 17.4 17.5 17.6 17.7 17.8 17.9 Gaudet, P et al. (2011) Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Brief. Bioinformatics 12 449-62 PubMed GONUTS page