GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

YEAST:PAF1

From GONUTS
Jump to: navigation, search
Species (Taxon ID) Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast). (559292)
Gene Name(s) PAF1
Protein Name(s) RNA polymerase II-associated protein 1

Protein PAF1

External Links
UniProt P38351
EMBL X76053
Z36148
BK006936
PIR S44541
RefSeq NP_009838.1
ProteinModelPortal P38351
BioGrid 32973
DIP DIP-1149N
IntAct P38351
MINT MINT-600620
MaxQB P38351
PaxDb P38351
PeptideAtlas P38351
PRIDE P38351
EnsemblFungi [example_ID YBR279W]
GeneID 852582
KEGG sce:YBR279W
EuPathDB FungiDB:YBR279W
SGD S000000483
eggNOG NOG276051
HOGENOM HOG000000738
InParanoid P38351
KO K15174
OMA DEWISMY
OrthoDB EOG7F2534
BioCyc YEAST:G3O-29199-MONOMER
NextBio 971727
PRO PR:P38351
Proteomes UP000002311
GO GO:0016593
GO:0005634
GO:0035327
GO:0003682
GO:1990269
GO:0000993
GO:0000983
GO:0001076
GO:0001089
GO:0000183
GO:0006353
GO:0070911
GO:0016570
GO:0031124
GO:0045910
GO:0000122
GO:2001255
GO:2001165
GO:2001209
GO:0032968
GO:0031938
GO:2001173
GO:2001166
GO:0051569
GO:2001163
GO:0006357
GO:0000083
GO:0090262
GO:0006364
GO:0031126
GO:0001015
GO:0006362
GO:0006368
GO:0006360
InterPro IPR007133
PANTHER PTHR23188
Pfam PF03985

Annotations

Qualifier GO ID GO term name Reference ECO ID ECO term name with/from Aspect Extension Notes Status
GO:0000122

negative regulation of transcription from RNA polymerase II promoter

PMID:22252319[1]

ECO:0000315

P

Figure 1 shows greater ARG1 expression caused Paf1 deletion. This is due to Paf1 mediated negative regulation of RNA polymerase II.

complete
CACAO 11166

involved_in

GO:2001255

positive regulation of histone H3-K36 trimethylation

PMID:17948059[2]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:2001209

positive regulation of transcription elongation from RNA polymerase I promoter

PMID:20299458[3]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:2001173

regulation of histone H2B conserved C-terminal lysine ubiquitination

PMID:19531475[4]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:2001166

regulation of histone H2B ubiquitination

PMID:12876294[5]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:2001165

positive regulation of phosphorylation of RNA polymerase II C-terminal domain serine 2 residues

PMID:18469135[6]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:2001163

regulation of phosphorylation of RNA polymerase II C-terminal domain serine 2 residues

PMID:15149594[7]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:1990269

RNA polymerase II C-terminal domain phosphoserine binding

PMID:22796944[8]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0090262

regulation of transcription-coupled nucleotide-excision repair

PMID:21737840[9]

ECO:0000316

genetic interaction evidence used in manual assertion

SGD:S000000318

P

Seeded From UniProt

complete

involved_in

GO:0070911

global genome nucleotide-excision repair

PMID:21737840[9]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0051569

regulation of histone H3-K4 methylation

PMID:12876294[5]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0051569

regulation of histone H3-K4 methylation

PMID:12667454[10]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0051569

regulation of histone H3-K4 methylation

PMID:15180994[11]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0045910

negative regulation of DNA recombination

PMID:9891041[12]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0035327

transcriptionally active chromatin

PMID:11983171[13]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0032968

positive regulation of transcription elongation from RNA polymerase II promoter

PMID:14710186[14]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0031938

regulation of chromatin silencing at telomere

PMID:12667454[10]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0031938

regulation of chromatin silencing at telomere

PMID:18194564[15]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0031126

snoRNA 3'-end processing

PMID:16246725[16]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0031124

mRNA 3'-end processing

PMID:15149594[7]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0016593

Cdc73/Paf1 complex

PMID:11884586[17]

ECO:0000353

physical interaction evidence used in manual assertion

SGD:S000004410
SGD:S000005505

C

Seeded From UniProt

complete

part_of

GO:0016593

Cdc73/Paf1 complex

PMID:11927560[18]

ECO:0000353

physical interaction evidence used in manual assertion

SGD:S000003213

C

Seeded From UniProt

complete

part_of

GO:0016593

Cdc73/Paf1 complex

PMID:9032243[19]

ECO:0000353

physical interaction evidence used in manual assertion

SGD:S000004410

C

Seeded From UniProt

complete

involved_in

GO:0006368

transcription elongation from RNA polymerase II promoter

PMID:11927560[18]

ECO:0000316

genetic interaction evidence used in manual assertion

SGD:S000003011
SGD:S000003175
SGD:S000003295
SGD:S000004470

P

Seeded From UniProt

complete

involved_in

GO:0006368

transcription elongation from RNA polymerase II promoter

PMID:11927560[18]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006364

rRNA processing

PMID:20299458[3]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006362

transcription elongation from RNA polymerase I promoter

PMID:19164765[20]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006360

transcription by RNA polymerase I

PMID:20299458[3]

ECO:0000316

genetic interaction evidence used in manual assertion

SGD:S000005192

P

Seeded From UniProt

complete

involved_in

GO:0006360

transcription by RNA polymerase I

PMID:20299458[3]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006357

regulation of transcription by RNA polymerase II

PMID:11884586[17]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006353

DNA-templated transcription, termination

PMID:23109428[21]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

happens_during:(GO:0009302)

Seeded From UniProt

complete

part_of

GO:0005634

nucleus

PMID:15149594[7]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0005634

nucleus

PMID:15643076[22]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

enables

GO:0003682

chromatin binding

PMID:11983171[13]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0001015

snoRNA transcription by RNA polymerase II

PMID:16246725[16]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0001015

snoRNA transcription by RNA polymerase II

PMID:16246725[16]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0000993

RNA polymerase II complex binding

PMID:16581788[23]

ECO:0000353

physical interaction evidence used in manual assertion

SGD:S000002299

F

Seeded From UniProt

complete

involved_in

GO:0000183

chromatin silencing at rDNA

PMID:16582434[24]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0000122

negative regulation of transcription by RNA polymerase II

PMID:15180994[11]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0000083

regulation of transcription involved in G1/S transition of mitotic cell cycle

PMID:10219085[25]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0035327

transcriptionally active chromatin

PMID:21873635[26]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

FB:FBgn0010750
PANTHER:PTN000573292
SGD:S000000483

C

Seeded From UniProt

complete

part_of

GO:0016593

Cdc73/Paf1 complex

PMID:21873635[26]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

FB:FBgn0010750
PANTHER:PTN000573292
PomBase:SPAC664.03
SGD:S000000483
UniProtKB:Q8N7H5

C

Seeded From UniProt

complete

enables

GO:0003682

chromatin binding

PMID:21873635[26]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

MGI:MGI:1923988
PANTHER:PTN000573292
SGD:S000000483

F

Seeded From UniProt

complete

enables

GO:0000993

RNA polymerase II complex binding

PMID:21873635[26]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

PANTHER:PTN000573292
SGD:S000000483
UniProtKB:Q8N7H5

F

Seeded From UniProt

complete

involved_in

GO:0006368

transcription elongation from RNA polymerase II promoter

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR007133

P

Seeded From UniProt

complete

involved_in

GO:0016570

histone modification

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR007133

P

Seeded From UniProt

complete

part_of

GO:0016593

Cdc73/Paf1 complex

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR007133

C

Seeded From UniProt

complete

part_of

GO:0005634

nucleus

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0539

C

Seeded From UniProt

complete

part_of

GO:0005654

nucleoplasm

GO_REF:0000039

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-SubCell:SL-0190

C

Seeded From UniProt

complete

Notes

References

See Help:References for how to manage references in GONUTS.

  1. Crisucci, EM & Arndt, KM (2012) Paf1 restricts Gcn4 occupancy and antisense transcription at the ARG1 promoter. Mol. Cell. Biol. 32 1150-63 PubMed GONUTS page
  2. Chu, Y et al. (2007) Regulation of histone modification and cryptic transcription by the Bur1 and Paf1 complexes. EMBO J. 26 4646-56 PubMed GONUTS page
  3. 3.0 3.1 3.2 3.3 Zhang, Y et al. (2010) The RNA polymerase-associated factor 1 complex (Paf1C) directly increases the elongation rate of RNA polymerase I and is required for efficient regulation of rRNA synthesis. J. Biol. Chem. 285 14152-9 PubMed GONUTS page
  4. Kim, J & Roeder, RG (2009) Direct Bre1-Paf1 complex interactions and RING finger-independent Bre1-Rad6 interactions mediate histone H2B ubiquitylation in yeast. J. Biol. Chem. 284 20582-92 PubMed GONUTS page
  5. 5.0 5.1 Wood, A et al. (2003) The Paf1 complex is essential for histone monoubiquitination by the Rad6-Bre1 complex, which signals for histone methylation by COMPASS and Dot1p. J. Biol. Chem. 278 34739-42 PubMed GONUTS page
  6. Nordick, K et al. (2008) Direct interactions between the Paf1 complex and a cleavage and polyadenylation factor are revealed by dissociation of Paf1 from RNA polymerase II. Eukaryotic Cell 7 1158-67 PubMed GONUTS page
  7. 7.0 7.1 7.2 Mueller, CL et al. (2004) The Paf1 complex has functions independent of actively transcribing RNA polymerase II. Mol. Cell 14 447-56 PubMed GONUTS page
  8. Qiu, H et al. (2012) Pol II CTD kinases Bur1 and Kin28 promote Spt5 CTR-independent recruitment of Paf1 complex. EMBO J. 31 3494-505 PubMed GONUTS page
  9. 9.0 9.1 Tatum, D et al. (2011) Diverse roles of RNA polymerase II-associated factor 1 complex in different subpathways of nucleotide excision repair. J. Biol. Chem. 286 30304-13 PubMed GONUTS page
  10. 10.0 10.1 Krogan, NJ et al. (2003) The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation. Mol. Cell 11 721-9 PubMed GONUTS page
  11. 11.0 11.1 Carvin, CD & Kladde, MP (2004) Effectors of lysine 4 methylation of histone H3 in Saccharomyces cerevisiae are negative regulators of PHO5 and GAL1-10. J. Biol. Chem. 279 33057-62 PubMed GONUTS page
  12. Chang, M et al. (1999) A complex containing RNA polymerase II, Paf1p, Cdc73p, Hpr1p, and Ccr4p plays a role in protein kinase C signaling. Mol. Cell. Biol. 19 1056-67 PubMed GONUTS page
  13. 13.0 13.1 Pokholok, DK et al. (2002) Exchange of RNA polymerase II initiation and elongation factors during gene expression in vivo. Mol. Cell 9 799-809 PubMed GONUTS page
  14. Rondón, AG et al. (2004) Molecular evidence indicating that the yeast PAF complex is required for transcription elongation. EMBO Rep. 5 47-53 PubMed GONUTS page
  15. Marton, HA & Desiderio, S (2008) The Paf1 complex promotes displacement of histones upon rapid induction of transcription by RNA polymerase II. BMC Mol. Biol. 9 4 PubMed GONUTS page
  16. 16.0 16.1 16.2 Sheldon, KE et al. (2005) A Requirement for the Saccharomyces cerevisiae Paf1 complex in snoRNA 3' end formation. Mol. Cell 20 225-36 PubMed GONUTS page
  17. 17.0 17.1 Mueller, CL & Jaehning, JA (2002) Ctr9, Rtf1, and Leo1 are components of the Paf1/RNA polymerase II complex. Mol. Cell. Biol. 22 1971-80 PubMed GONUTS page
  18. 18.0 18.1 18.2 Squazzo, SL et al. (2002) The Paf1 complex physically and functionally associates with transcription elongation factors in vivo. EMBO J. 21 1764-74 PubMed GONUTS page
  19. Shi, X et al. (1997) Cdc73p and Paf1p are found in a novel RNA polymerase II-containing complex distinct from the Srbp-containing holoenzyme. Mol. Cell. Biol. 17 1160-9 PubMed GONUTS page
  20. Zhang, Y et al. (2009) The Paf1 complex is required for efficient transcription elongation by RNA polymerase I. Proc. Natl. Acad. Sci. U.S.A. 106 2153-8 PubMed GONUTS page
  21. Tomson, BN et al. (2013) Effects of the Paf1 complex and histone modifications on snoRNA 3'-end formation reveal broad and locus-specific regulation. Mol. Cell. Biol. 33 170-82 PubMed GONUTS page
  22. Porter, SE et al. (2005) Separation of the Saccharomyces cerevisiae Paf1 complex from RNA polymerase II results in changes in its subnuclear localization. Eukaryotic Cell 4 209-20 PubMed GONUTS page
  23. Qiu, H et al. (2006) The Spt4p subunit of yeast DSIF stimulates association of the Paf1 complex with elongating RNA polymerase II. Mol. Cell. Biol. 26 3135-48 PubMed GONUTS page
  24. Mueller, JE et al. (2006) The requirements for COMPASS and Paf1 in transcriptional silencing and methylation of histone H3 in Saccharomyces cerevisiae. Genetics 173 557-67 PubMed GONUTS page
  25. Koch, C et al. (1999) A role for Ctr9p and Paf1p in the regulation G1 cyclin expression in yeast. Nucleic Acids Res. 27 2126-34 PubMed GONUTS page
  26. 26.0 26.1 26.2 26.3 Gaudet, P et al. (2011) Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Brief. Bioinformatics 12 449-62 PubMed GONUTS page