GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

SCHPO:RAD32

From GONUTS
Jump to: navigation, search
Species (Taxon ID) Schizosaccharomyces pombe (strain 972 / ATCC 24843) (Fission yeast). (284812)
Gene Name(s) rad32
Protein Name(s) DNA repair protein rad32
External Links
UniProt Q09683
EMBL X82322
CU329670
PIR S58097
RefSeq NP_592935.1
PDB 4FBK
4FBQ
4FBW
4FCX
PDBsum 4FBK
4FBQ
4FBW
4FCX
ProteinModelPortal Q09683
SMR Q09683
BioGrid 279207
DIP DIP-52388N
IntAct Q09683
STRING 4896.SPAC13C5.07.1
MaxQB Q09683
PaxDb Q09683
PRIDE Q09683
EnsemblFungi SPAC13C5.07.1
GeneID 2542757
KEGG spo:SPAC13C5.07
EuPathDB FungiDB:SPAC13C5.07
PomBase SPAC13C5.07
HOGENOM HOG000216581
InParanoid Q09683
KO K10865
OMA RMFVNKQ
PhylomeDB Q09683
Reactome R-SPO-1834949
R-SPO-2559586
R-SPO-5693548
R-SPO-5693565
PRO PR:Q09683
Proteomes UP000002485
GO GO:0030870
GO:0000784
GO:0035861
GO:1990421
GO:0008408
GO:0008296
GO:0045027
GO:0008311
GO:0030145
GO:0004518
GO:0008310
GO:0000014
GO:0000403
GO:0042769
GO:0000729
GO:0006302
GO:1990918
GO:0000724
GO:0006303
GO:0031573
GO:1990898
GO:0042138
GO:0097552
GO:0007095
GO:0007131
GO:0072422
GO:0000723
Gene3D 3.30.110.110
3.60.21.10
InterPro IPR004843
IPR029052
IPR003701
IPR007281
IPR038487
Pfam PF00149
PF04152
PIRSF PIRSF000882
SMART SM01347
TIGRFAMs TIGR00583

Annotations

Qualifier GO ID GO term name Reference ECO ID ECO term name with/from Aspect Extension Notes Status
GO:0006303

double-strand break repair via nonhomologous end joining

PMID:28292918[1]

ECO:0000315

P

Mre11, a protein required for double stranded break repair via non homologous end joining, forms a dimer to bridge the gap between the two broken ends of the double-stranded DNA. Figure 6 proves how dimerization of mre11 ( or rad32 in S. pombe) needs to occur for efficient non homologous end joining since the introduced mutations in the Mre11 dimerization domain, but not the nuclease domain, reduce NHEJ. This data is represented by the drastic decrease in PCR products since the bands for PCR products would indicate successful repair by non homologous end-joining. Therefore, mre11 dimerization is essential for NHEJ since there were no excision products from PCR.

complete
CACAO 12476

involved_in

GO:1990918

double-strand break repair involved in meiotic recombination

PMID:15238514[2]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:1990898

meiotic DNA double-strand break clipping

PMID:19911044[3]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:1990898

meiotic DNA double-strand break clipping

PMID:19752195[4]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:1990898

meiotic DNA double-strand break clipping

PMID:19139281[5]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:1990421

subtelomeric heterochromatin

PMID:12196391[6]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0072422

signal transduction involved in DNA damage checkpoint

PMID:12944482[7]

ECO:0000305

curator inference used in manual assertion

GO:0030870

P

Seeded From UniProt

complete

enables

GO:0045027

DNA end binding

PMID:18854158[8]

ECO:0000266

sequence orthology evidence used in manual assertion

UniProtKB:Q8U1N9

F

Seeded From UniProt

complete

involved_in

GO:0042769

DNA damage response, detection of DNA damage

PMID:12944482[7]

ECO:0000305

curator inference used in manual assertion

GO:0030870

P

Seeded From UniProt

complete

involved_in

GO:0042138

meiotic DNA double-strand break formation

PMID:15654094[9]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0035861

site of double-strand break

PMID:23080121[10]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0035861

site of double-strand break

PMID:21931565[11]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0035861

site of double-strand break

PMID:19804755[12]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0035861

site of double-strand break

PMID:17936710[13]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0031573

intra-S DNA damage checkpoint

PMID:12944482[7]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0030870

Mre11 complex

PMID:22705791[14]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

enables

GO:0030145

manganese ion binding

PMID:22705791[14]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0008311

double-stranded DNA 3'-5' exodeoxyribonuclease activity

PMID:9651580[15]

ECO:0000266

sequence orthology evidence used in manual assertion

UniProtKB:P49959

F

Seeded From UniProt

complete

enables

GO:0008310

single-stranded DNA 3'-5' exodeoxyribonuclease activity

PMID:9651580[15]

ECO:0000266

sequence orthology evidence used in manual assertion

UniProtKB:P49959

F

Seeded From UniProt

complete

involved_in

GO:0007131

reciprocal meiotic recombination

PMID:7885834[16]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006303

double-strand break repair via nonhomologous end joining

PMID:10373582[17]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006302

double-strand break repair

PMID:7885834[16]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0004518

nuclease activity

PMID:22705791[14]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

part_of

GO:0000784

nuclear chromosome, telomeric region

PMID:12861005[18]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0000729

DNA double-strand break processing

PMID:23080121[10]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0000729

DNA double-strand break processing

PMID:21931565[11]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

part_of:(GO:0000724)

Seeded From UniProt

complete

involved_in

GO:0000724

double-strand break repair via homologous recombination

PMID:12628934[19]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0000723

telomere maintenance

PMID:12861005[18]

ECO:0000316

genetic interaction evidence used in manual assertion

PomBase:SPAC16A10.07c

P

Seeded From UniProt

complete

enables

GO:0000403

Y-form DNA binding

PMID:18854158[8]

ECO:0000266

sequence orthology evidence used in manual assertion

UniProtKB:Q8U1N9

F

Seeded From UniProt

complete

enables

GO:0000014

single-stranded DNA endodeoxyribonuclease activity

PMID:9651580[15]

ECO:0000266

sequence orthology evidence used in manual assertion

UniProtKB:P49959

F

Seeded From UniProt

complete

involved_in

GO:0097552

mitochondrial double-strand break repair via homologous recombination

PMID:21873635[20]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

PANTHER:PTN000015644
SGD:S000004837

P

Seeded From UniProt

complete

involved_in

GO:0042138

meiotic DNA double-strand break formation

PMID:21873635[20]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

PANTHER:PTN000015644
PomBase:SPAC13C5.07

P

Seeded From UniProt

complete

involved_in

GO:0031573

intra-S DNA damage checkpoint

PMID:21873635[20]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

MGI:MGI:1100512
PANTHER:PTN000015646
PomBase:SPAC13C5.07

P

Seeded From UniProt

complete

enables

GO:0008408

3'-5' exonuclease activity

PMID:21873635[20]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

PANTHER:PTN002228124
SGD:S000004837
UniProtKB:P49959

F

Seeded From UniProt

complete

enables

GO:0008296

3'-5'-exodeoxyribonuclease activity

PMID:21873635[20]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

PANTHER:PTN002228124
SGD:S000004837

F

Seeded From UniProt

complete

involved_in

GO:0007095

mitotic G2 DNA damage checkpoint

PMID:21873635[20]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

FB:FBgn0020270
MGI:MGI:1100512
PANTHER:PTN000015644

P

Seeded From UniProt

complete

involved_in

GO:0006303

double-strand break repair via nonhomologous end joining

PMID:21873635[20]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

PANTHER:PTN000015644
PomBase:SPAC13C5.07
SGD:S000004837
UniProtKB:P49959

P

Seeded From UniProt

complete

colocalizes_with

GO:0000784

nuclear chromosome, telomeric region

PMID:21873635[20]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

MGI:MGI:1100512
PANTHER:PTN000015644
PomBase:SPAC13C5.07
UniProtKB:P49959

C

Seeded From UniProt

complete

involved_in

GO:0000724

double-strand break repair via homologous recombination

PMID:21873635[20]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

PANTHER:PTN000015644
PomBase:SPAC13C5.07
SGD:S000004837
UniProtKB:P49959

P

Seeded From UniProt

complete

involved_in

GO:0000723

telomere maintenance

PMID:21873635[20]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

FB:FBgn0020270
PANTHER:PTN000015644
PomBase:SPAC13C5.07
SGD:S000004837
UniProtKB:P49959

P

Seeded From UniProt

complete

enables

GO:0004519

endonuclease activity

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR003701
InterPro:IPR007281

F

Seeded From UniProt

complete

part_of

GO:0005634

nucleus

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR007281

C

Seeded From UniProt

complete

involved_in

GO:0006302

double-strand break repair

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR003701
InterPro:IPR007281

P

Seeded From UniProt

complete

enables

GO:0008408

3'-5' exonuclease activity

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR003701

F

Seeded From UniProt

complete

enables

GO:0016787

hydrolase activity

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR004843

F

Seeded From UniProt

complete

enables

GO:0030145

manganese ion binding

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR007281

F

Seeded From UniProt

complete

part_of

GO:0030870

Mre11 complex

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR003701

C

Seeded From UniProt

complete

enables

GO:0004518

nuclease activity

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0540

F

Seeded From UniProt

complete

enables

GO:0004527

exonuclease activity

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0269

F

Seeded From UniProt

complete

enables

GO:0016787

hydrolase activity

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0378

F

Seeded From UniProt

complete

involved_in

GO:0006281

DNA repair

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0234

P

Seeded From UniProt

complete

involved_in

GO:0006974

cellular response to DNA damage stimulus

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0227

P

Seeded From UniProt

complete

involved_in

GO:0051321

meiotic cell cycle

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0469

P

Seeded From UniProt

complete

enables

GO:0004519

endonuclease activity

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0255

F

Seeded From UniProt

complete

part_of

GO:0005634

nucleus

GO_REF:0000037
GO_REF:0000039

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0539
UniProtKB-SubCell:SL-0191

C

Seeded From UniProt

complete

Notes

References

See Help:References for how to manage references in GONUTS.

  1. Li, Y et al. (2017) Non-Homologous End-Joining with Minimal Sequence Loss Is Promoted by the Mre11-Rad50-Nbs1-Ctp1 Complex in Schizosaccharomyces pombe. Genetics PubMed GONUTS page
  2. Young, JA et al. (2004) Conserved and nonconserved proteins for meiotic DNA breakage and repair in yeasts. Genetics 167 593-605 PubMed GONUTS page
  3. Rothenberg, M et al. (2009) Ctp1 and the MRN-complex are required for endonucleolytic Rec12 removal with release of a single class of oligonucleotides in fission yeast. PLoS Genet. 5 e1000722 PubMed GONUTS page
  4. Milman, N et al. (2009) Meiotic DNA double-strand break repair requires two nucleases, MRN and Ctp1, to produce a single size class of Rec12 (Spo11)-oligonucleotide complexes. Mol. Cell. Biol. 29 5998-6005 PubMed GONUTS page
  5. Hartsuiker, E et al. (2009) Ctp1CtIP and Rad32Mre11 nuclease activity are required for Rec12Spo11 removal, but Rec12Spo11 removal is dispensable for other MRN-dependent meiotic functions. Mol. Cell. Biol. 29 1671-81 PubMed GONUTS page
  6. Nakamura, TM et al. (2002) Telomere binding of checkpoint sensor and DNA repair proteins contributes to maintenance of functional fission yeast telomeres. Genetics 161 1437-52 PubMed GONUTS page
  7. 7.0 7.1 7.2 Chahwan, C et al. (2003) The fission yeast Rad32 (Mre11)-Rad50-Nbs1 complex is required for the S-phase DNA damage checkpoint. Mol. Cell. Biol. 23 6564-73 PubMed GONUTS page
  8. 8.0 8.1 Williams, RS et al. (2008) Mre11 dimers coordinate DNA end bridging and nuclease processing in double-strand-break repair. Cell 135 97-109 PubMed GONUTS page
  9. Farah, JA et al. (2005) A novel recombination pathway initiated by the Mre11/Rad50/Nbs1 complex eliminates palindromes during meiosis in Schizosaccharomyces pombe. Genetics 169 1261-74 PubMed GONUTS page
  10. 10.0 10.1 Limbo, O et al. (2012) Mre11 ATLD17/18 mutation retains Tel1/ATM activity but blocks DNA double-strand break repair. Nucleic Acids Res. 40 11435-49 PubMed GONUTS page
  11. 11.0 11.1 Langerak, P et al. (2011) Release of Ku and MRN from DNA ends by Mre11 nuclease activity and Ctp1 is required for homologous recombination repair of double-strand breaks. PLoS Genet. 7 e1002271 PubMed GONUTS page
  12. Williams, RS et al. (2009) Nbs1 flexibly tethers Ctp1 and Mre11-Rad50 to coordinate DNA double-strand break processing and repair. Cell 139 87-99 PubMed GONUTS page
  13. Limbo, O et al. (2007) Ctp1 is a cell-cycle-regulated protein that functions with Mre11 complex to control double-strand break repair by homologous recombination. Mol. Cell 28 134-46 PubMed GONUTS page
  14. 14.0 14.1 14.2 Schiller, CB et al. (2012) Structure of Mre11-Nbs1 complex yields insights into ataxia-telangiectasia-like disease mutations and DNA damage signaling. Nat. Struct. Mol. Biol. 19 693-700 PubMed GONUTS page
  15. 15.0 15.1 15.2 Paull, TT & Gellert, M (1998) The 3' to 5' exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks. Mol. Cell 1 969-79 PubMed GONUTS page
  16. 16.0 16.1 Tavassoli, M et al. (1995) Cloning and characterisation of the Schizosaccharomyces pombe rad32 gene: a gene required for repair of double strand breaks and recombination. Nucleic Acids Res. 23 383-8 PubMed GONUTS page
  17. Wilson, S et al. (1999) The role of Schizosaccharomyces pombe Rad32, the Mre11 homologue, and other DNA damage response proteins in non-homologous end joining and telomere length maintenance. Nucleic Acids Res. 27 2655-61 PubMed GONUTS page
  18. 18.0 18.1 Tomita, K et al. (2003) Competition between the Rad50 complex and the Ku heterodimer reveals a role for Exo1 in processing double-strand breaks but not telomeres. Mol. Cell. Biol. 23 5186-97 PubMed GONUTS page
  19. Prudden, J et al. (2003) Pathway utilization in response to a site-specific DNA double-strand break in fission yeast. EMBO J. 22 1419-30 PubMed GONUTS page
  20. 20.0 20.1 20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 Gaudet, P et al. (2011) Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Brief. Bioinformatics 12 449-62 PubMed GONUTS page