GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

HUMAN:TAU

From GONUTS
Jump to: navigation, search
Species (Taxon ID) Homo sapiens (Human). (9606)
Gene Name(s) MAPT (synonyms: MAPTL, MTBT1, TAU)
Protein Name(s) Microtubule-associated protein tau

Neurofibrillary tangle protein Paired helical filament-tau PHF-tau

External Links
UniProt P10636
EMBL J03778
X14474
AF047863
AF027491
AF047856
AF047857
AF027492
AF047858
AF027493
AF047859
AF047860
AF047862
AF027494
AF027495
AF027496
AF027491
AF027492
AF027493
AF047860
AF047862
AF027495
AF027496
AF047863
AF027491
AF047856
AF047857
AF027492
AF027493
AF047860
AF047862
AF027494
AF027495
AF027496
AF047863
AF047861
AY730549
BT006772
AC004139
AC010792
AC217771
AC217779
BC000558
BC098281
BC099721
BC101936
BC114504
BC114948
AY526356
M25298
BN000503
CCDS CCDS11499.1
CCDS11500.1
CCDS11501.1
CCDS11502.1
CCDS45715.1
CCDS45716.1
CCDS56033.1
PIR I52232
JS0370
PN0001
S26663
RefSeq NP_001116538.2
NP_001116539.1
NP_001190181.1
NP_005901.2
NP_058518.1
NP_058519.3
NP_058525.1
XP_006725337.1
XP_006725338.1
UniGene Hs.101174
PDB 1I8H
2ON9
3OVL
4FL5
4GLR
4NP8
PDBsum 1I8H
2ON9
3OVL
4FL5
4GLR
4NP8
DisProt DP00126
ProteinModelPortal P10636
BioGrid 110308
DIP DIP-29753N
IntAct P10636
MINT MINT-134394
BindingDB P10636
ChEMBL CHEMBL1293224
DrugBank DB01248
DB01229
PhosphoSite P10636
DMDM 334302961
MaxQB P10636
PaxDb P10636
PRIDE P10636
DNASU 4137
Ensembl ENST00000262410
ENST00000334239
ENST00000340799
ENST00000344290
ENST00000351559
ENST00000415613
ENST00000420682
ENST00000431008
ENST00000446361
ENST00000535772
ENST00000571987
ENST00000574436
ENST00000612872
ENST00000620070
ENST00000620818
ENST00000622106
GeneID 4137
KEGG hsa:4137
UCSC uc002ijr.4
uc002ijs.4
uc002ijt.4
uc002iju.4
uc002ijx.4
uc010dau.3
uc021tyv.1
uc021tyw.1
CTD 4137
GeneCards GC17P043971
GeneReviews MAPT
HGNC HGNC:6893
HPA CAB000151
MIM 157140
172700
260540
600274
601104
neXtProt NX_P10636
Orphanet 275864
240071
100070
240103
240085
240112
240094
100069
PharmGKB PA238
eggNOG NOG148882
GeneTree ENSGT00530000063491
HOVERGEN HBG000991
InParanoid P10636
KO K04380
OMA MKVKGAD
OrthoDB EOG738045
TreeFam TF316358
Reactome REACT_13541
ChiTaRS MAPT
EvolutionaryTrace P10636
GeneWiki Tau_protein
GenomeRNAi 4137
NextBio 16246
PMAP-CutDB P10636
PRO PR:P10636
Proteomes UP000005640
UP000005640
Bgee P10636
ExpressionAtlas P10636
Genevestigator P10636
GO GO:0030424
GO:0005930
GO:0036464
GO:0005829
GO:0030426
GO:0005874
GO:0005875
GO:0034399
GO:0005886
GO:0045298
GO:0034185
GO:0019899
GO:0071813
GO:0008017
GO:0017124
GO:0005200
GO:0007628
GO:0006915
GO:0008088
GO:0048675
GO:0006921
GO:0048699
GO:0000226
GO:0047497
GO:0032387
GO:0001764
GO:0045773
GO:0031116
GO:0010506
GO:0031113
GO:0060632
InterPro IPR027324
IPR001084
IPR002955
PANTHER PTHR11501
Pfam PF00418
PRINTS PR01261
PROSITE PS00229
PS51491

Annotations

Qualifier GO ID GO term name Reference ECO ID ECO term name with/from Aspect Extension Notes Status

Contributes to

GO:0007015

actin filament organization

GO_REF:0000019

ECO:0000314

P

Figure 3: This RNA blot analysis evaluates 8 brain regions, and 3 organs. When probed with the actin probe, there were only minimal regional changes among alzheimers patients.

complete
CACAO 9382

GO:0007015

actin filament organization

GO_REF:0000019

ECO:0000314

P

Figure 4: RNA blot analysis shows that actin filaments contribute to neurological tangles in the frontal cortex of Alzheimer's patients

complete
CACAO 9383

GO:0031116

positive regulation of microtubule polymerization

PMID:7706316[1]

ECO:0000314

P

Figure 8

complete
CACAO 9384

GO:0031113

regulation of microtubule polymerization

PMID:1057175[2]

ECO:0000314

P

Seeded from Uniprot

complete
CACAO 9389

involved_in

GO:1904428

negative regulation of tubulin deacetylation

PMID:19457097[3]

ECO:0000316

genetic interaction evidence used in manual assertion

UniProtKB:Q9UBN7

P

Seeded From UniProt

complete

enables

GO:0019901

protein kinase binding

PMID:17906291[4]

ECO:0000250

sequence similarity evidence used in manual assertion

UniProtKB:P10637

F

occurs_in:(UBERON:0000955)

Seeded From UniProt

complete

enables

GO:0019899

enzyme binding

PMID:23362255[5]

ECO:0000250

sequence similarity evidence used in manual assertion

UniProtKB:P10637

F

Seeded From UniProt

complete

part_of

GO:0044304

main axon

GO_REF:0000024

ECO:0000250

sequence similarity evidence used in manual assertion

UniProtKB:P19332

C

Seeded From UniProt

complete

part_of

GO:0005737

cytoplasm

GO_REF:0000024

ECO:0000250

sequence similarity evidence used in manual assertion

UniProtKB:P19332

C

Seeded From UniProt

complete

part_of

GO:0015630

microtubule cytoskeleton

PMID:28386764[6]

ECO:0000303

author statement without traceable support used in manual assertion

C

part_of:(GO:0030424)

Seeded From UniProt

complete

part_of

GO:0005737

cytoplasm

PMID:23666762[7]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0030425

dendrite

PMID:23666762[7]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

enables

GO:0042803

protein homodimerization activity

PMID:27044754[8]

ECO:0000315

mutant phenotype evidence used in manual assertion

F

Seeded From UniProt

complete

part_of

GO:0005737

cytoplasm

PMID:27044754[8]

ECO:0000315

mutant phenotype evidence used in manual assertion

C

Seeded From UniProt

complete

enables

GO:0051087

chaperone binding

PMID:25051234[9]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:P10909

F

occurs_at:(GO:0005856)

Seeded From UniProt

complete

enables

GO:0019901

protein kinase binding

PMID:24251416[10]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:O08679

F

Seeded From UniProt

complete

involved_in

GO:0098930

axonal transport

PMID:28377597[11]

ECO:0000303

author statement without traceable support used in manual assertion

P

occurs_in:(CL:0000540)

Seeded From UniProt

complete

part_of

GO:0015630

microtubule cytoskeleton

PMID:28377597[11]

ECO:0000314

direct assay evidence used in manual assertion

C

part_of:(GO:0043005)|part_of:(GO:0043025)

Seeded From UniProt

complete

involved_in

GO:0000226

microtubule cytoskeleton organization

PMID:28377597[11]

ECO:0000303

author statement without traceable support used in manual assertion

P

occurs_in:(CL:0000540)

Seeded From UniProt

complete

part_of

GO:0097386

glial cell projection

GO_REF:0000024

ECO:0000250

sequence similarity evidence used in manual assertion

UniProtKB:P10637

C

part_of:(CL:0000128)

Seeded From UniProt

complete

part_of

GO:0045121

membrane raft

GO_REF:0000024

ECO:0000250

sequence similarity evidence used in manual assertion

UniProtKB:P10637

C

part_of:(CL:0000128)

Seeded From UniProt

complete

part_of

GO:0044297

cell body

GO_REF:0000024

ECO:0000250

sequence similarity evidence used in manual assertion

UniProtKB:P10637

C

part_of:(CL:0000128)

Seeded From UniProt

complete

enables

GO:0019901

protein kinase binding

GO_REF:0000024

ECO:0000250

sequence similarity evidence used in manual assertion

UniProtKB:P10637

F

Seeded From UniProt

complete

involved_in

GO:0007267

cell-cell signaling

PMID:28386764[6]

ECO:0000303

author statement without traceable support used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0005576

extracellular region

PMID:28386764[6]

ECO:0000303

author statement without traceable support used in manual assertion

C

part_of:(UBERON:0001017)

Seeded From UniProt

complete

part_of

GO:0005623

cell

PMID:28386764[6]

ECO:0000303

author statement without traceable support used in manual assertion

C

part_of:(CL:0000540)

Seeded From UniProt

complete

enables

GO:0008017

microtubule binding

PMID:28386764[6]

ECO:0000303

author statement without traceable support used in manual assertion

F

occurs_in:(CL:0000540)

Seeded From UniProt

complete

enables

GO:0042802

identical protein binding

PMID:26014385[12]

ECO:0000315

mutant phenotype evidence used in manual assertion

F

Seeded From UniProt

complete

part_of

GO:0005737

cytoplasm

PMID:26014385[12]

ECO:0000315

mutant phenotype evidence used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0010917

negative regulation of mitochondrial membrane potential

PMID:22920254[13]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:1903748

negative regulation of establishment of protein localization to mitochondrion

PMID:22920254[13]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0032930

positive regulation of superoxide anion generation

PMID:22920254[13]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0090258

negative regulation of mitochondrial fission

PMID:22920254[13]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

  • occurs_in:(CL:1001571)
  • positively_regulates:(GO:0070997)

Seeded From UniProt

complete

involved_in

GO:1901216

positive regulation of neuron death

PMID:22920254[13]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

happens_during:(GO:0090258)

Seeded From UniProt

complete

involved_in

GO:0090140

regulation of mitochondrial fission

PMID:22367970[14]

ECO:0000305

curator inference used in manual assertion

GO:0005515

P

has_regulation_target:(UniProtKB:O00429)

Seeded From UniProt

complete

involved_in

GO:0051258

protein polymerization

PMID:27044754[8]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0042803

protein homodimerization activity

PMID:15654759[15]

ECO:0000315

mutant phenotype evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0097435

supramolecular fiber organization

PMID:15654759[15]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:1990000

amyloid fibril formation

PMID:7929085[16]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0042802

identical protein binding

PMID:7929085[16]

ECO:0000315

mutant phenotype evidence used in manual assertion

F

Seeded From UniProt

complete

part_of

GO:0015630

microtubule cytoskeleton

PMID:15147841[17]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0070507

regulation of microtubule cytoskeleton organization

PMID:15147841[17]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0099609

microtubule lateral binding

PMID:15147841[17]

ECO:0000315

mutant phenotype evidence used in manual assertion

F

Seeded From UniProt

complete

part_of

GO:0097418

neurofibrillary tangle

PMID:2484340[18]

ECO:0000314

direct assay evidence used in manual assertion

C

part_of:(UBERON:0002421)

Seeded From UniProt

complete

colocalizes_with

GO:0005874

microtubule

GO_REF:0000024

ECO:0000250

sequence similarity evidence used in manual assertion

UniProtKB:P19332

C

part_of:(UBERON:0000955)

Seeded From UniProt

complete

involved_in

GO:1905689

positive regulation of diacylglycerol kinase activity

GO_REF:0000024

ECO:0000250

sequence similarity evidence used in manual assertion

UniProtKB:P29172

P

has_regulation_target:(UniProtKB:P52824)

Seeded From UniProt

complete

involved_in

GO:1903829

positive regulation of cellular protein localization

PMID:27356871[19]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0031110

regulation of microtubule polymerization or depolymerization

PMID:27356871[19]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

occurs_in:(GO:0043194)

Seeded From UniProt

complete

part_of

GO:0015630

microtubule cytoskeleton

PMID:27356871[19]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0005737

cytoplasm

PMID:27356871[19]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0097435

supramolecular fiber organization

PMID:14769047[20]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0042802

identical protein binding

PMID:14769047[20]

ECO:0000315

mutant phenotype evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0008017

microtubule binding

PMID:10747907[21]

ECO:0000315

mutant phenotype evidence used in manual assertion

F

Seeded From UniProt

complete

part_of

GO:0030673

axolemma

PMID:10747907[21]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0005829

cytosol

PMID:10747907[21]

ECO:0000314

direct assay evidence used in manual assertion

C

part_of:(CL:0000540)

Seeded From UniProt

complete

part_of

GO:0005886

plasma membrane

PMID:10747907[21]

ECO:0000314

direct assay evidence used in manual assertion

C

part_of:(CL:0000540)

Seeded From UniProt

complete

involved_in

GO:1902474

positive regulation of protein localization to synapse

PMID:20655099[22]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0043025

neuronal cell body

PMID:20655099[22]

ECO:0000315

mutant phenotype evidence used in manual assertion

C

part_of:(CL:1001571)

Seeded From UniProt

complete

part_of

GO:0036477

somatodendritic compartment

PMID:20655099[22]

ECO:0000315

mutant phenotype evidence used in manual assertion

C

part_of:(CL:1001571)

Seeded From UniProt

complete

colocalizes_with

GO:0016020

membrane

PMID:20655099[22]

ECO:0000315

mutant phenotype evidence used in manual assertion

C

part_of:(CL:1001571)

Seeded From UniProt

complete

part_of

GO:0005829

cytosol

GO_REF:0000024

ECO:0000250

sequence similarity evidence used in manual assertion

UniProtKB:P10637

C

Seeded From UniProt

complete

part_of

GO:0005634

nucleus

GO_REF:0000024

ECO:0000250

sequence similarity evidence used in manual assertion

UniProtKB:P10637

C

Seeded From UniProt

complete

enables

GO:0003677

DNA binding

GO_REF:0000024

ECO:0000250

sequence similarity evidence used in manual assertion

UniProtKB:P10637

F

occurs_in:(CL:0000540)

Seeded From UniProt

complete

involved_in

GO:2001020

regulation of response to DNA damage stimulus

PMID:21131359[23]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:1900034

regulation of cellular response to heat

PMID:21131359[23]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

occurs_in:(CL:0000540)

Seeded From UniProt

complete

involved_in

GO:0010629

negative regulation of gene expression

PMID:23164821[24]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

  • occurs_in:(UBERON:0000956)
  • regulates_expression_of:(ENSEMBL:ENSG00000170345)

Seeded From UniProt

complete

part_of

GO:0097418

neurofibrillary tangle

PMID:25620700[25]

ECO:0000303

author statement without traceable support used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0044297

cell body

PMID:25620700[25]

ECO:0000314

direct assay evidence used in manual assertion

C

part_of:(CL:0002608)

Seeded From UniProt

complete

part_of

GO:0030425

dendrite

PMID:25620700[25]

ECO:0000314

direct assay evidence used in manual assertion

C

part_of:(UBERON:0001954)

Seeded From UniProt

complete

involved_in

GO:0031116

positive regulation of microtubule polymerization

PMID:7706316[1]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0008017

microtubule binding

PMID:28377597[11]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

part_of

GO:0036464

cytoplasmic ribonucleoprotein granule

PMID:15121898[26]

ECO:0000314

direct assay evidence used in manual assertion

C

part_of:(CL:0000031)

Seeded From UniProt

complete

involved_in

GO:0010288

response to lead ion

GO_REF:0000024

ECO:0000250

sequence similarity evidence used in manual assertion

UniProtKB:P19332

P

Seeded From UniProt

complete

involved_in

GO:0048312

intracellular distribution of mitochondria

PMID:21854751[27]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

has_end_location:(GO:0043005)

Seeded From UniProt

complete

enables

GO:0048018

receptor ligand activity

PMID:18272392[28]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0050848

regulation of calcium-mediated signaling

PMID:18272392[28]

ECO:0000314

direct assay evidence used in manual assertion

P

  • regulates_o_occurs_in:(CL:0002608)
  • part_of:(GO:1900115)

Seeded From UniProt

complete

involved_in

GO:0050808

synapse organization

PMID:17270732[29]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

occurs_in:(CL:0002608)

Seeded From UniProt

complete

involved_in

GO:0007613

memory

PMID:20655099[22]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0033673

negative regulation of kinase activity

PMID:20655099[22]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0051879

Hsp90 protein binding

PMID:17517623[30]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:P11499

F

occurs_in:(UBERON:0000955)

Seeded From UniProt

complete

part_of

GO:0030424

axon

PMID:26363795[31]

ECO:0000303

author statement without traceable support used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:1902988

neurofibrillary tangle assembly

PMID:26363795[31]

ECO:0000303

author statement without traceable support used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0015630

microtubule cytoskeleton

PMID:26363795[31]

ECO:0000303

author statement without traceable support used in manual assertion

C

part_of:(GO:0030424)

Seeded From UniProt

complete

enables

GO:0034185

apolipoprotein binding

PMID:7566652[32]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:P02649

F

Seeded From UniProt

complete

enables

GO:0071813

lipoprotein particle binding

PMID:7972031[33]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:P02649

F

Seeded From UniProt

complete

involved_in

GO:0048699

generation of neurons

PMID:8522593[34]

ECO:0000303

author statement without traceable support used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0045773

positive regulation of axon extension

PMID:1389180[35]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0045298

tubulin complex

PMID:8642405[36]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0034399

nuclear periphery

PMID:19157893[37]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0031116

positive regulation of microtubule polymerization

PMID:1421571[38]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0031113

regulation of microtubule polymerization

PMID:1057175[2]

ECO:0000303

author statement without traceable support used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0030426

growth cone

PMID:8642405[36]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0030424

axon

PMID:8642405[36]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

enables

GO:0019899

enzyme binding

PMID:20133804[39]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:P27124

F

Seeded From UniProt

complete

enables

GO:0019899

enzyme binding

PMID:12888622[40]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:Q14790

F

Seeded From UniProt

complete

enables

GO:0019899

enzyme binding

PMID:12888622[40]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:P55210

F

Seeded From UniProt

complete

enables

GO:0019899

enzyme binding

PMID:12888622[40]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:P55212

F

Seeded From UniProt

complete

enables

GO:0019899

enzyme binding

PMID:12888622[40]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:P29466

F

Seeded From UniProt

complete

enables

GO:0019899

enzyme binding

PMID:9736630[41]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:P42574

F

Seeded From UniProt

complete

enables

GO:0017124

SH3 domain binding

PMID:9763511[42]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:P12931

F

Seeded From UniProt

complete

enables

GO:0017124

SH3 domain binding

PMID:9763511[42]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:P06241

F

Seeded From UniProt

complete

enables

GO:0008017

microtubule binding

PMID:1918161[43]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

part_of

GO:0005886

plasma membrane

PMID:8522593[34]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0000226

microtubule cytoskeleton organization

PMID:1057175[2]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0043005

neuron projection

PMID:21873635[44]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

MGI:MGI:97175
PANTHER:PTN000161190
RGD:3044
RGD:69329
WB:WBGene00004212

C

Seeded From UniProt

complete

involved_in

GO:0031175

neuron projection development

PMID:21873635[44]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

PANTHER:PTN000161190
UniProtKB:P11137

P

Seeded From UniProt

complete

enables

GO:0008017

microtubule binding

PMID:21873635[44]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

FB:FBgn0266579
MGI:MGI:97175
MGI:MGI:97178
MGI:MGI:97180
PANTHER:PTN000161190
RGD:3044
RGD:69329
UniProtKB:P10636
WB:WBGene00004212

F

Seeded From UniProt

complete

involved_in

GO:0000226

microtubule cytoskeleton organization

PMID:21873635[44]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

FB:FBgn0266579
MGI:MGI:97175
MGI:MGI:97178
MGI:MGI:97180
PANTHER:PTN000161190
UniProtKB:P10636

P

Seeded From UniProt

complete

involved_in

GO:0010506

regulation of autophagy

PMID:19074461[45]

ECO:0000316

genetic interaction evidence used in manual assertion

UniProtKB:O15118

P

Seeded From UniProt

complete

enables

GO:0042802

identical protein binding

PMID:30158706[46]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:P10636

F

Seeded From UniProt

complete

enables

GO:0042802

identical protein binding

PMID:16446437[47]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:P10636

F

Seeded From UniProt

complete

part_of

GO:0016607

nuclear speck

GO_REF:0000052

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0005886

plasma membrane

GO_REF:0000052

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0010469

regulation of signaling receptor activity

GO_REF:0000108

ECO:0000364

evidence based on logical inference from manual annotation used in automatic assertion

GO:0048018

P

Seeded From UniProt

complete

part_of

GO:1904115

axon cytoplasm

GO_REF:0000108

ECO:0000364

evidence based on logical inference from manual annotation used in automatic assertion

GO:0019896

C

Seeded From UniProt

complete

enables

GO:0008017

microtubule binding

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR002955

F

Seeded From UniProt

complete

enables

GO:0015631

tubulin binding

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR001084

F

Seeded From UniProt

complete

involved_in

GO:0046785

microtubule polymerization

PMID:26996940[48]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0051260

protein homooligomerization

PMID:26704708[49]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

  • happens_during:(UBERON:0000112)
  • happens_during:(GO:0018105)
  • occurs_in:(UBERON:0002421)
  • regulates:(GO:0007611)|happens_during(UBERON:0018241)
  • happens_during:(GO:0018105)
  • occurs_in:(UBERON:0002421)
  • regulates:(GO:0007611)

Seeded From UniProt

complete

involved_in

GO:0007416

synapse assembly

PMID:26704708[49]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

  • happens_during:(UBERON:0000112)
  • occurs_in:(UBERON:0003883)
  • regulates:(GO:0007611)|happens_during(UBERON:0018241)
  • occurs_in:(UBERON:0003883)
  • regulates:(GO:0007611)

Seeded From UniProt

complete

involved_in

GO:0007611

learning or memory

PMID:26704708[49]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

happens_during:(UBERON:0000112)|happens_during:(UBERON:0018241)

Seeded From UniProt

complete

enables

GO:0042802

identical protein binding

PMID:26436840[50]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:P10636-8

F

Seeded From UniProt

complete

enables

GO:0042802

identical protein binding

PMID:17535890[51]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:P10636-8

F

Seeded From UniProt

complete

involved_in

GO:0061564

axon development

PMID:26609151[52]

ECO:0000304

author statement supported by traceable reference used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0008017

microtubule binding

PMID:26609151[52]
PMID:26363795[31]

ECO:0000304

author statement supported by traceable reference used in manual assertion


F

Seeded From UniProt

complete

involved_in

GO:0031113

regulation of microtubule polymerization

PMID:10640627[53]
PMID:28386764[6]

ECO:0000304

author statement supported by traceable reference used in manual assertion


P

  • occurs_in:(UBERON:0000955)
  • regulates_o_occurs_in:(UBERON:0000955)

Seeded From UniProt

complete

involved_in

GO:1990416

cellular response to brain-derived neurotrophic factor stimulus

PMID:28386764[6]

ECO:0000304

author statement supported by traceable reference used in manual assertion

P

occurs_in:(CL:0002608)

Seeded From UniProt

complete

part_of

GO:0043197

dendritic spine

PMID:28386764[6]

ECO:0000304

author statement supported by traceable reference used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:1904428

negative regulation of tubulin deacetylation

PMID:28386764[6]

ECO:0000304

author statement supported by traceable reference used in manual assertion

P

has_regulation_target:(UniProtKB:Q9UBN7)

Seeded From UniProt

complete

enables

GO:0030674

protein binding, bridging

PMID:28386764[6]

ECO:0000304

author statement supported by traceable reference used in manual assertion

F

Seeded From UniProt

complete

part_of

GO:0005739

mitochondrion

PMID:28386764[6]

ECO:0000304

author statement supported by traceable reference used in manual assertion

C

  • part_of:(CL:0000540)
  • part_of:(UBERON:0000955)
  • part_of:(GO:0036477)

Seeded From UniProt

complete

part_of

GO:0030424

axon

PMID:28386764[6]

ECO:0000304

author statement supported by traceable reference used in manual assertion

C

  • part_of:(CL:0000540)
  • part_of:(UBERON:0000955)

Seeded From UniProt

complete

involved_in

GO:0006475

internal protein amino acid acetylation

PMID:28386764[6]

ECO:0000304

author statement supported by traceable reference used in manual assertion

P

has_input:(UniProtKB:P10636)

Seeded From UniProt

complete

part_of

GO:0036477

somatodendritic compartment

PMID:28386764[6]

ECO:0000304

author statement supported by traceable reference used in manual assertion

C

  • part_of:(CL:0000540)
  • part_of:(UBERON:0000955)

Seeded From UniProt

complete

involved_in

GO:1900452

regulation of long-term synaptic depression

PMID:28386764[6]

ECO:0000304

author statement supported by traceable reference used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0016072

rRNA metabolic process

PMID:28386764[6]

ECO:0000304

author statement supported by traceable reference used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0033044

regulation of chromosome organization

PMID:28386764[6]

ECO:0000304

author statement supported by traceable reference used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0003680

AT DNA binding

PMID:28386764[6]

ECO:0000304

author statement supported by traceable reference used in manual assertion

F

causally_upstream_of:(GO:0010468)

Seeded From UniProt

complete

enables

GO:0003677

DNA binding

PMID:28386764[6]

ECO:0000304

author statement supported by traceable reference used in manual assertion

F

part_of:(GO:0034614)

Seeded From UniProt

complete

involved_in

GO:0034614

cellular response to reactive oxygen species

PMID:28386764[6]

ECO:0000304

author statement supported by traceable reference used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0043565

sequence-specific DNA binding

PMID:28386764[6]

ECO:0000304

author statement supported by traceable reference used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0003697

single-stranded DNA binding

PMID:28386764[6]

ECO:0000304

author statement supported by traceable reference used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0099077

histone-dependent DNA binding

PMID:28386764[6]

ECO:0000304

author statement supported by traceable reference used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0034063

stress granule assembly

PMID:28386764[6]

ECO:0000304

author statement supported by traceable reference used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:1990090

cellular response to nerve growth factor stimulus

PMID:28386764[6]

ECO:0000304

author statement supported by traceable reference used in manual assertion

P

occurs_in:(CL:0001033)

Seeded From UniProt

complete

involved_in

GO:0021954

central nervous system neuron development

PMID:28386764[6]

ECO:0000304

author statement supported by traceable reference used in manual assertion

P

occurs_in:(CL:0001033)

Seeded From UniProt

complete

part_of

GO:0005623

cell

PMID:26996940[48]

ECO:0000304

author statement supported by traceable reference used in manual assertion

C

part_of:(CL:0000540)

Seeded From UniProt

complete

involved_in

GO:0046785

microtubule polymerization

PMID:26996940[48]

ECO:0000304

author statement supported by traceable reference used in manual assertion

P

causally_upstream_of:(GO:0051301)|causally_upstream_of:(GO:0006810)|causally_upstream_of:(GO:0048870)|causally_upstream_of:(GO:0016043)

Seeded From UniProt

complete

part_of

GO:0005886

plasma membrane

PMID:28386764[6]

ECO:0000304

author statement supported by traceable reference used in manual assertion

C

  • part_of:(CL:0000540)
  • part_of:(UBERON:0000955)
  • part_of:(GO:0036477)

Seeded From UniProt

complete

enables

GO:0003779

actin binding

PMID:28386764[6]
PMID:22920254[13]
PMID:27306859[54]

ECO:0000304

author statement supported by traceable reference used in manual assertion



F

Seeded From UniProt

complete

enables

GO:0003723

RNA binding

PMID:28386764[6]

ECO:0000304

author statement supported by traceable reference used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0003690

double-stranded DNA binding

PMID:28386764[6]

ECO:0000304

author statement supported by traceable reference used in manual assertion

F

Seeded From UniProt

complete

enables

GO:1902936

phosphatidylinositol bisphosphate binding

PMID:28386764[6]

ECO:0000304

author statement supported by traceable reference used in manual assertion

F

causally_upstream_of:(GO:0023052)

Seeded From UniProt

complete

enables

GO:0035091

phosphatidylinositol binding

PMID:28386764[6]

ECO:0000304

author statement supported by traceable reference used in manual assertion

F

causally_upstream_of:(GO:0023052)

Seeded From UniProt

complete

part_of

GO:0005634

nucleus

PMID:28386764[6]

ECO:0000304

author statement supported by traceable reference used in manual assertion

C

  • part_of:(CL:0000540)
  • part_of:(UBERON:0000955)
  • part_of:(GO:0036477)

Seeded From UniProt

complete

involved_in

GO:0070507

regulation of microtubule cytoskeleton organization

PMID:28386764[6]

ECO:0000304

author statement supported by traceable reference used in manual assertion

P

regulates:(GO:0098930)

Seeded From UniProt

complete

involved_in

GO:0048167

regulation of synaptic plasticity

PMID:28386764[6]

ECO:0000304

author statement supported by traceable reference used in manual assertion

P

  • regulates_o_occurs_in:(CL:0002608)
  • occurs_in:(CL:0002608)
  • part_of:(GO:1990416)

Seeded From UniProt

complete

involved_in

GO:0019896

axonal transport of mitochondrion

PMID:26363795[31]

ECO:0000304

author statement supported by traceable reference used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0048143

astrocyte activation

PMID:26363795[31]

ECO:0000304

author statement supported by traceable reference used in manual assertion

P

occurs_in:(GO:0005615)

Seeded From UniProt

complete

involved_in

GO:0001774

microglial cell activation

PMID:26363795[31]

ECO:0000304

author statement supported by traceable reference used in manual assertion

P

occurs_in:(GO:0005615)

Seeded From UniProt

complete

enables

GO:0051721

protein phosphatase 2A binding

PMID:26363795[31]

ECO:0000304

author statement supported by traceable reference used in manual assertion

F

occurs_in:(UBERON:0000955)

Seeded From UniProt

complete

enables

GO:0034452

dynactin binding

PMID:26363795[31]

ECO:0000304

author statement supported by traceable reference used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0072386

plus-end-directed organelle transport along microtubule

PMID:26363795[31]

ECO:0000304

author statement supported by traceable reference used in manual assertion

P

  • occurs_in:(CL:0000117)
  • has_target_end_location:(GO:0043679)

Seeded From UniProt

complete

involved_in

GO:0034605

cellular response to heat

PMID:26363795[31]

ECO:0000304

author statement supported by traceable reference used in manual assertion

P

occurs_in:(CL:0000117)

Seeded From UniProt

complete

involved_in

GO:0031175

neuron projection development

PMID:26363795[31]

ECO:0000304

author statement supported by traceable reference used in manual assertion

P

occurs_in:(CL:0000117)

Seeded From UniProt

complete

involved_in

GO:0006919

activation of cysteine-type endopeptidase activity involved in apoptotic process

PMID:26363795[31]

ECO:0000304

author statement supported by traceable reference used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0031122

cytoplasmic microtubule organization

PMID:26363795[31]

ECO:0000304

author statement supported by traceable reference used in manual assertion

P

occurs_in:(CL:0000117)

Seeded From UniProt

complete

involved_in

GO:0051259

protein complex oligomerization

PMID:26363795[31]

ECO:0000304

author statement supported by traceable reference used in manual assertion

P

occurs_in:(CL:0000117)|occurs_in:(CL:0000243)

Seeded From UniProt

complete

involved_in

GO:0098930

axonal transport

PMID:26363795[31]

ECO:0000304

author statement supported by traceable reference used in manual assertion

P

occurs_in:(CL:0000117)

Seeded From UniProt

complete

part_of

GO:0005829

cytosol

Reactome:R-NUL-9619539
Reactome:R-NUL-9619534
Reactome:R-HSA-201629

ECO:0000304

author statement supported by traceable reference used in manual assertion



C

Seeded From UniProt

complete

part_of

GO:0042995

cell projection

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0966

C

Seeded From UniProt

complete

part_of

GO:0005886

plasma membrane

GO_REF:0000037
GO_REF:0000039

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-1003
UniProtKB-SubCell:SL-0039

C

Seeded From UniProt

complete

part_of

GO:0005737

cytoplasm

GO_REF:0000037
GO_REF:0000039

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0963
UniProtKB-SubCell:SL-0086

C

Seeded From UniProt

complete

part_of

GO:0016020

membrane

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0472

C

Seeded From UniProt

complete

part_of

GO:0005856

cytoskeleton

GO_REF:0000037
GO_REF:0000039

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0206
UniProtKB-SubCell:SL-0090

C

Seeded From UniProt

complete

part_of

GO:0005874

microtubule

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0493

C

Seeded From UniProt

complete

part_of

GO:0030424

axon

GO_REF:0000039

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-SubCell:SL-0279

C

Seeded From UniProt

complete

part_of

GO:0030425

dendrite

GO_REF:0000039

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-SubCell:SL-0283

C

Seeded From UniProt

complete

part_of

GO:0005829

cytosol

GO_REF:0000039

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-SubCell:SL-0091

C

Seeded From UniProt

complete

Notes

References

See Help:References for how to manage references in GONUTS.

  1. 1.0 1.1 Drewes, G et al. (1995) Microtubule-associated protein/microtubule affinity-regulating kinase (p110mark). A novel protein kinase that regulates tau-microtubule interactions and dynamic instability by phosphorylation at the Alzheimer-specific site serine 262. J. Biol. Chem. 270 7679-88 PubMed GONUTS page
  2. 2.0 2.1 2.2 Weingarten, MD et al. (1975) A protein factor essential for microtubule assembly. Proc. Natl. Acad. Sci. U.S.A. 72 1858-62 PubMed GONUTS page
  3. Perez, M et al. (2009) Tau--an inhibitor of deacetylase HDAC6 function. J. Neurochem. 109 1756-66 PubMed GONUTS page
  4. Ryoo, SR et al. (2007) DYRK1A-mediated hyperphosphorylation of Tau. A functional link between Down syndrome and Alzheimer disease. J. Biol. Chem. 282 34850-7 PubMed GONUTS page
  5. Kimura, T et al. (2013) Isomerase Pin1 stimulates dephosphorylation of tau protein at cyclin-dependent kinase (Cdk5)-dependent Alzheimer phosphorylation sites. J. Biol. Chem. 288 7968-77 PubMed GONUTS page
  6. 6.00 6.01 6.02 6.03 6.04 6.05 6.06 6.07 6.08 6.09 6.10 6.11 6.12 6.13 6.14 6.15 6.16 6.17 6.18 6.19 6.20 6.21 6.22 6.23 6.24 6.25 6.26 6.27 6.28 6.29 6.30 6.31 6.32 6.33 6.34 Guo, T et al. (2017) Roles of tau protein in health and disease. Acta Neuropathol. 133 665-704 PubMed GONUTS page
  7. 7.0 7.1 Gu, GJ et al. (2013) Role of individual MARK isoforms in phosphorylation of tau at Ser²⁶² in Alzheimer's disease. Neuromolecular Med. 15 458-69 PubMed GONUTS page
  8. 8.0 8.1 8.2 Yan, X et al. (2016) FRMD4A-cytohesin signaling modulates the cellular release of tau. J. Cell. Sci. 129 2003-15 PubMed GONUTS page
  9. Zhou, Y et al. (2014) Intracellular clusterin interacts with brain isoforms of the bridging integrator 1 and with the microtubule-associated protein Tau in Alzheimer's disease. PLoS ONE 9 e103187 PubMed GONUTS page
  10. Schwalbe, M et al. (2013) Phosphorylation of human Tau protein by microtubule affinity-regulating kinase 2. Biochemistry 52 9068-79 PubMed GONUTS page
  11. 11.0 11.1 11.2 11.3 Yin, X et al. (2017) Dyrk1A overexpression leads to increase of 3R-tau expression and cognitive deficits in Ts65Dn Down syndrome mice. Sci Rep 7 619 PubMed GONUTS page
  12. 12.0 12.1 Guerreiro, PS et al. (2016) LRRK2 Promotes Tau Accumulation, Aggregation and Release. Mol. Neurobiol. 53 3124-3135 PubMed GONUTS page
  13. 13.0 13.1 13.2 13.3 13.4 13.5 DuBoff, B et al. (2012) Tau promotes neurodegeneration via DRP1 mislocalization in vivo. Neuron 75 618-32 PubMed GONUTS page
  14. Manczak, M & Reddy, PH (2012) Abnormal interaction between the mitochondrial fission protein Drp1 and hyperphosphorylated tau in Alzheimer's disease neurons: implications for mitochondrial dysfunction and neuronal damage. Hum. Mol. Genet. 21 2538-47 PubMed GONUTS page
  15. 15.0 15.1 Eliezer, D et al. (2005) Residual structure in the repeat domain of tau: echoes of microtubule binding and paired helical filament formation. Biochemistry 44 1026-36 PubMed GONUTS page
  16. 16.0 16.1 Schweers, O et al. (1994) Structural studies of tau protein and Alzheimer paired helical filaments show no evidence for beta-structure. J. Biol. Chem. 269 24290-7 PubMed GONUTS page
  17. 17.0 17.1 17.2 Santarella, RA et al. (2004) Surface-decoration of microtubules by human tau. J. Mol. Biol. 339 539-53 PubMed GONUTS page
  18. Goedert, M et al. (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease. Neuron 3 519-26 PubMed GONUTS page
  19. 19.0 19.1 19.2 19.3 Sohn, PD et al. (2016) Acetylated tau destabilizes the cytoskeleton in the axon initial segment and is mislocalized to the somatodendritic compartment. Mol Neurodegener 11 47 PubMed GONUTS page
  20. 20.0 20.1 Barghorn, S et al. (2004) Tau paired helical filaments from Alzheimer's disease brain and assembled in vitro are based on beta-structure in the core domain. Biochemistry 43 1694-703 PubMed GONUTS page
  21. 21.0 21.1 21.2 21.3 Maas, T et al. (2000) Interaction of tau with the neural membrane cortex is regulated by phosphorylation at sites that are modified in paired helical filaments. J. Biol. Chem. 275 15733-40 PubMed GONUTS page
  22. 22.0 22.1 22.2 22.3 22.4 22.5 Ittner, LM et al. (2010) Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer's disease mouse models. Cell 142 387-97 PubMed GONUTS page
  23. 23.0 23.1 Sultan, A et al. (2011) Nuclear tau, a key player in neuronal DNA protection. J. Biol. Chem. 286 4566-75 PubMed GONUTS page
  24. Killick, R et al. (2014) Clusterin regulates β-amyloid toxicity via Dickkopf-1-driven induction of the wnt-PCP-JNK pathway. Mol. Psychiatry 19 88-98 PubMed GONUTS page
  25. 25.0 25.1 25.2 Matarin, M et al. (2015) A genome-wide gene-expression analysis and database in transgenic mice during development of amyloid or tau pathology. Cell Rep 10 633-44 PubMed GONUTS page
  26. Villacé, P et al. (2004) The composition of Staufen-containing RNA granules from human cells indicates their role in the regulated transport and translation of messenger RNAs. Nucleic Acids Res. 32 2411-20 PubMed GONUTS page
  27. Kopeikina, KJ et al. (2011) Tau accumulation causes mitochondrial distribution deficits in neurons in a mouse model of tauopathy and in human Alzheimer's disease brain. Am. J. Pathol. 179 2071-82 PubMed GONUTS page
  28. 28.0 28.1 Gómez-Ramos, A et al. (2008) Extracellular tau promotes intracellular calcium increase through M1 and M3 muscarinic receptors in neuronal cells. Mol. Cell. Neurosci. 37 673-81 PubMed GONUTS page
  29. Yoshiyama, Y et al. (2007) Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53 337-51 PubMed GONUTS page
  30. Luo, W et al. (2007) Roles of heat-shock protein 90 in maintaining and facilitating the neurodegenerative phenotype in tauopathies. Proc. Natl. Acad. Sci. U.S.A. 104 9511-6 PubMed GONUTS page
  31. 31.00 31.01 31.02 31.03 31.04 31.05 31.06 31.07 31.08 31.09 31.10 31.11 31.12 31.13 31.14 31.15 Zhang, CC et al. (2016) The Role of MAPT in Neurodegenerative Diseases: Genetics, Mechanisms and Therapy. Mol. Neurobiol. 53 4893-904 PubMed GONUTS page
  32. Huang, DY et al. (1995) ApoE3 binding to tau tandem repeat I is abolished by tau serine262 phosphorylation. Neurosci. Lett. 192 209-12 PubMed GONUTS page
  33. Strittmatter, WJ et al. (1994) Isoform-specific interactions of apolipoprotein E with microtubule-associated protein tau: implications for Alzheimer disease. Proc. Natl. Acad. Sci. U.S.A. 91 11183-6 PubMed GONUTS page
  34. 34.0 34.1 Brandt, R et al. (1995) Interaction of tau with the neural plasma membrane mediated by tau's amino-terminal projection domain. J. Cell Biol. 131 1327-40 PubMed GONUTS page
  35. Caceres, A et al. (1992) Suppression of MAP2 in cultured cerebellar macroneurons inhibits minor neurite formation. Neuron 9 607-18 PubMed GONUTS page
  36. 36.0 36.1 36.2 Black, MM et al. (1996) Tau is enriched on dynamic microtubules in the distal region of growing axons. J. Neurosci. 16 3601-19 PubMed GONUTS page
  37. Dinh, K et al. (2009) Fluorescence microscopy and 3D image reconstruction of cytokine initiated disruption of the Parkinson disease associated proteins alpha-synuclein, tau and ubiquitin in cultured glial cells. Cytokine 45 179-83 PubMed GONUTS page
  38. Drechsel, DN et al. (1992) Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Mol. Biol. Cell 3 1141-54 PubMed GONUTS page
  39. Chambraud, B et al. (2010) A role for FKBP52 in Tau protein function. Proc. Natl. Acad. Sci. U.S.A. 107 2658-63 PubMed GONUTS page
  40. 40.0 40.1 40.2 40.3 Gamblin, TC et al. (2003) Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer's disease. Proc. Natl. Acad. Sci. U.S.A. 100 10032-7 PubMed GONUTS page
  41. Canu, N et al. (1998) Tau cleavage and dephosphorylation in cerebellar granule neurons undergoing apoptosis. J. Neurosci. 18 7061-74 PubMed GONUTS page
  42. 42.0 42.1 Lee, G et al. (1998) Tau interacts with src-family non-receptor tyrosine kinases. J. Cell. Sci. 111 ( Pt 21) 3167-77 PubMed GONUTS page
  43. Butner, KA & Kirschner, MW (1991) Tau protein binds to microtubules through a flexible array of distributed weak sites. J. Cell Biol. 115 717-30 PubMed GONUTS page
  44. 44.0 44.1 44.2 44.3 Gaudet, P et al. (2011) Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Brief. Bioinformatics 12 449-62 PubMed GONUTS page
  45. Pacheco, CD et al. (2009) Tau deletion exacerbates the phenotype of Niemann-Pick type C mice and implicates autophagy in pathogenesis. Hum. Mol. Genet. 18 956-65 PubMed GONUTS page
  46. Falcon, B et al. (2018) Structures of filaments from Pick's disease reveal a novel tau protein fold. Nature 561 137-140 PubMed GONUTS page
  47. Guo, JP et al. (2006) Abeta and tau form soluble complexes that may promote self aggregation of both into the insoluble forms observed in Alzheimer's disease. Proc. Natl. Acad. Sci. U.S.A. 103 1953-8 PubMed GONUTS page
  48. 48.0 48.1 48.2 Kutter, S et al. (2016) Regulation of Microtubule Assembly by Tau and not by Pin1. J. Mol. Biol. 428 1742-59 PubMed GONUTS page
  49. 49.0 49.1 49.2 Kim, Y et al. (2016) Caspase-cleaved tau exhibits rapid memory impairment associated with tau oligomers in a transgenic mouse model. Neurobiol. Dis. 87 19-28 PubMed GONUTS page
  50. Poepsel, S et al. (2015) Determinants of amyloid fibril degradation by the PDZ protease HTRA1. Nat. Chem. Biol. 11 862-9 PubMed GONUTS page
  51. Wang, YP et al. (2007) Stepwise proteolysis liberates tau fragments that nucleate the Alzheimer-like aggregation of full-length tau in a neuronal cell model. Proc. Natl. Acad. Sci. U.S.A. 104 10252-7 PubMed GONUTS page
  52. 52.0 52.1 Takei, Y et al. (2015) Defects in Synaptic Plasticity, Reduced NMDA-Receptor Transport, and Instability of Postsynaptic Density Proteins in Mice Lacking Microtubule-Associated Protein 1A. J. Neurosci. 35 15539-54 PubMed GONUTS page
  53. Gong, CX et al. (2000) Regulation of phosphorylation of neuronal microtubule-associated proteins MAP1b and MAP2 by protein phosphatase-2A and -2B in rat brain. Brain Res. 853 299-309 PubMed GONUTS page
  54. Bodea, LG et al. (2016) Tau physiology and pathomechanisms in frontotemporal lobar degeneration. J. Neurochem. 138 Suppl 1 71-94 PubMed GONUTS page