GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

DROME:TRPA1

From GONUTS
Jump to: navigation, search
Species (Taxon ID) Drosophila melanogaster (Fruit fly). (7227)
Gene Name(s) TrpA1 (synonyms: Anktm1)
Protein Name(s) Transient receptor potential cation channel subfamily A member 1

dTRPA1 Ankyrin-like with transmembrane domains protein 1 dANKTM1

External Links
UniProt Q7Z020
EMBL AY302598
AE014296
AE014296
RefSeq NP_001097554.4
NP_648263.5
UniGene Dm.15461
IntAct Q7Z020
STRING 7227.FBpp0289445
TCDB 1.A.4.6.2
PaxDb Q7Z020
GeneID 39015
KEGG dme:Dmel_CG5751
CTD 8989
FlyBase FBgn0035934
eggNOG COG0666
InParanoid Q7Z020
KO K04984
OrthoDB EOG7P02H2
Reactome REACT_184319
SignaLink Q7Z020
GenomeRNAi 39015
NextBio 811470
PRO PR:Q7Z020
Proteomes UP000000803
Bgee Q7Z020
ExpressionAtlas Q7Z020
GO GO:0034703
GO:0016021
GO:0005261
GO:0015276
GO:0006816
GO:0098655
GO:0006812
GO:0034605
GO:0001580
GO:0050968
GO:0050965
GO:0050960
GO:0034220
GO:0007638
GO:0046957
GO:0007602
GO:0009408
GO:0010378
GO:0040040
GO:0043052
Gene3D 1.25.40.20
InterPro IPR002110
IPR020683
IPR005821
IPR030288
PANTHER PTHR24171:SF3
Pfam PF00023
PF12796
PF00520
PRINTS PR01415
SMART SM00248
SUPFAM SSF48403
PROSITE PS50297
PS50088

Annotations

Qualifier GO ID GO term name Reference ECO ID ECO term name with/from Aspect Extension Notes Status
GO:0043052

thermotaxis

PMID:22139422[1]

ECO:0000315

P

Figure 3 references differing sensitivity to warmth in TrpA1 mutants

complete
CACAO 5192

part_of

GO:0016021

integral component of membrane

PMID:12815418[2]

ECO:0000305

curator inference used in manual assertion

GO:0005261

C

Seeded From UniProt

complete

involved_in

GO:0009408

response to heat

PMID:12815418[2]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006812

cation transport

PMID:12815418[2]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0005261

cation channel activity

PMID:12815418[2]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0046957

negative phototaxis

PMID:24009394[3]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0010378

temperature compensation of the circadian clock

PMID:23595730[4]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0034605

cellular response to heat

PMID:23027824[5]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0097604

temperature-gated cation channel activity

PMID:23027824[5]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0006812

cation transport

PMID:23027824[5]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0034703

cation channel complex

PMID:23027824[5]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0050960

detection of temperature stimulus involved in thermoception

PMID:23027824[5]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0007638

mechanosensory behavior

PMID:22347718[6]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0040040

thermosensory behavior

PMID:22347718[6]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0050965

detection of temperature stimulus involved in sensory perception of pain

PMID:21909389[7]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0050960

detection of temperature stimulus involved in thermoception

PMID:21909389[7]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0043052

thermotaxis

PMID:21393546[8]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0009416

response to light stimulus

PMID:21068723[9]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0046957

negative phototaxis

PMID:21068723[9]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0007602

phototransduction

PMID:21068723[9]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0023041

neuronal signal transduction

PMID:21068723[9]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0001580

detection of chemical stimulus involved in sensory perception of bitter taste

PMID:20404155[10]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

NOT|enables

GO:0033038

bitter taste receptor activity

PMID:20404155[10]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0015276

ligand-gated ion channel activity

PMID:20237474[11]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0050968

detection of chemical stimulus involved in sensory perception of pain

PMID:20237474[11]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0043052

thermotaxis

PMID:18660806[12]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0050850

positive regulation of calcium-mediated signaling

PMID:18548007[13]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0034605

cellular response to heat

PMID:18548007[13]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0097604

temperature-gated cation channel activity

PMID:18548007[13]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0006816

calcium ion transport

PMID:18548007[13]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0005262

calcium channel activity

PMID:18548007[13]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0050960

detection of temperature stimulus involved in thermoception

PMID:18548007[13]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0043052

thermotaxis

PMID:15681611[14]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0097604

temperature-gated cation channel activity

PMID:12815418[2]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0034605

cellular response to heat

PMID:12815418[2]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006816

calcium ion transport

PMID:10798390[15]

ECO:0000250

sequence similarity evidence used in manual assertion

P

Seeded From UniProt

Missing: with/from

enables

GO:0097604

temperature-gated cation channel activity

PMID:27749829[16]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0050965

detection of temperature stimulus involved in sensory perception of pain

PMID:27749829[16]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0070588

calcium ion transmembrane transport

GO_REF:0000108

ECO:0000364

evidence based on logical inference from manual annotation used in automatic assertion

GO:0005262

P

Seeded From UniProt

complete

involved_in

GO:0098655

cation transmembrane transport

GO_REF:0000108

ECO:0000364

evidence based on logical inference from manual annotation used in automatic assertion

GO:0005261

P

Seeded From UniProt

complete

involved_in

GO:0098655

cation transmembrane transport

GO_REF:0000108

ECO:0000364

evidence based on logical inference from manual annotation used in automatic assertion

GO:0097604

P

Seeded From UniProt

complete

involved_in

GO:0098655

cation transmembrane transport

GO_REF:0000108

ECO:0000364

evidence based on logical inference from manual annotation used in automatic assertion

GO:0097604

P

Seeded From UniProt

complete

involved_in

GO:0098655

cation transmembrane transport

GO_REF:0000108

ECO:0000364

evidence based on logical inference from manual annotation used in automatic assertion

GO:0097604

P

Seeded From UniProt

complete

involved_in

GO:0098655

cation transmembrane transport

GO_REF:0000108

ECO:0000364

evidence based on logical inference from manual annotation used in automatic assertion

GO:0097604

P

Seeded From UniProt

complete

enables

GO:0005216

ion channel activity

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR005821
InterPro:IPR030288

F

Seeded From UniProt

complete

involved_in

GO:0006811

ion transport

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR005821

P

Seeded From UniProt

complete

part_of

GO:0016020

membrane

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR005821

C

Seeded From UniProt

complete

part_of

GO:0016021

integral component of membrane

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR030288

C

Seeded From UniProt

complete

involved_in

GO:0034220

ion transmembrane transport

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR030288

P

Seeded From UniProt

complete

involved_in

GO:0055085

transmembrane transport

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR005821

P

Seeded From UniProt

complete

involved_in

GO:0050896

response to stimulus

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0716

P

Seeded From UniProt

complete

involved_in

GO:0006811

ion transport

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0406

P

Seeded From UniProt

complete

part_of

GO:0005886

plasma membrane

GO_REF:0000037
GO_REF:0000039

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-1003
UniProtKB-SubCell:SL-0039

C

Seeded From UniProt

complete

part_of

GO:0016020

membrane

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0472

C

Seeded From UniProt

complete

part_of

GO:0016021

integral component of membrane

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0812

C

Seeded From UniProt

complete

Notes

References

See Help:References for how to manage references in GONUTS.

  1. Kang, K et al. (2012) Modulation of TRPA1 thermal sensitivity enables sensory discrimination in Drosophila. Nature 481 76-80 PubMed GONUTS page
  2. 2.0 2.1 2.2 2.3 2.4 2.5 Viswanath, V et al. (2003) Opposite thermosensor in fruitfly and mouse. Nature 423 822-3 PubMed GONUTS page
  3. Yamanaka, N et al. (2013) Neuroendocrine control of Drosophila larval light preference. Science 341 1113-6 PubMed GONUTS page
  4. Lee, Y & Montell, C (2013) Drosophila TRPA1 functions in temperature control of circadian rhythm in pacemaker neurons. J. Neurosci. 33 6716-25 PubMed GONUTS page
  5. 5.0 5.1 5.2 5.3 5.4 Wang, H et al. (2013) Residues in the pore region of Drosophila transient receptor potential A1 dictate sensitivity to thermal stimuli. J. Physiol. (Lond.) 591 185-201 PubMed GONUTS page
  6. 6.0 6.1 Zhong, L et al. (2012) Thermosensory and nonthermosensory isoforms of Drosophila melanogaster TRPA1 reveal heat-sensor domains of a thermoTRP Channel. Cell Rep 1 43-55 PubMed GONUTS page
  7. 7.0 7.1 Neely, GG et al. (2011) TrpA1 regulates thermal nociception in Drosophila. PLoS ONE 6 e24343 PubMed GONUTS page
  8. Shen, WL et al. (2011) Function of rhodopsin in temperature discrimination in Drosophila. Science 331 1333-6 PubMed GONUTS page
  9. 9.0 9.1 9.2 9.3 Xiang, Y et al. (2010) Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall. Nature 468 921-6 PubMed GONUTS page
  10. 10.0 10.1 Kim, SH et al. (2010) Drosophila TRPA1 channel mediates chemical avoidance in gustatory receptor neurons. Proc. Natl. Acad. Sci. U.S.A. 107 8440-5 PubMed GONUTS page
  11. 11.0 11.1 Kang, K et al. (2010) Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception. Nature 464 597-600 PubMed GONUTS page
  12. Kwon, Y et al. (2008) Control of thermotactic behavior via coupling of a TRP channel to a phospholipase C signaling cascade. Nat. Neurosci. 11 871-3 PubMed GONUTS page
  13. 13.0 13.1 13.2 13.3 13.4 13.5 Hamada, FN et al. (2008) An internal thermal sensor controlling temperature preference in Drosophila. Nature 454 217-20 PubMed GONUTS page
  14. Rosenzweig, M et al. (2005) The Drosophila ortholog of vertebrate TRPA1 regulates thermotaxis. Genes Dev. 19 419-24 PubMed GONUTS page
  15. Littleton, JT & Ganetzky, B (2000) Ion channels and synaptic organization: analysis of the Drosophila genome. Neuron 26 35-43 PubMed GONUTS page
  16. 16.0 16.1 Luo, J et al. (2017) TRPA1 mediates sensation of the rate of temperature change in Drosophila larvae. Nat. Neurosci. 20 34-41 PubMed GONUTS page