GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

YEAST:FOB1

From GONUTS
Jump to: navigation, search
Species (Taxon ID) Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast). (559292)
Gene Name(s) FOB1 (ECO:0000303 with PMID:9078378[1]) (synonyms: HRM1 (ECO:0000303 with PMID:10230397[2]))
Protein Name(s) DNA replication fork-blocking protein FOB1 (ECO:0000303 with PMID:9078378[1])
External Links
UniProt O13329
EMBL AF013245
Z48758
BK006938
PIR S52676
RefSeq NP_010395.1
ProteinModelPortal O13329
BioGrid 32168
DIP DIP-870N
IntAct O13329
MINT MINT-407409
STRING 4932.YDR110W
MaxQB O13329
PaxDb O13329
PeptideAtlas O13329
EnsemblFungi [example_ID YDR110W]
GeneID 851688
KEGG sce:YDR110W
SGD S000002517
eggNOG NOG44059
InParanoid O13329
KO K12577
OrthoDB EOG73NGDF
BioCyc YEAST:G3O-29712-MONOMER
NextBio 969338
Proteomes UP000002311
Genevestigator O13329
GO GO:0005730
GO:0033553
GO:0043110
GO:0000183
GO:0007059
GO:0006310
GO:0007580
GO:0043007
GO:0008156
GO:0034503
GO:0070550
GO:0001302

Annotations

Qualifier GO ID GO term name Reference ECO ID ECO term name with/from Aspect Extension Notes Status
GO:0007580

extrachromosomal circular DNA accumulation involved in cell aging

PMID:10521401[3]

ECO:0000315

P

Figure 4.Accumulation of ERCs occurs more rapidly in a sir2 mutant than in wild-type mother cells when the cell is FOB1 dependent.Mutation of fob1 in sir2D hmlD mother cells decreases ERC accumulation below levels observed in wild-type cells.

complete

GO:0007569

cell aging

PMID:10521401[3]

ECO:0000315

P

Figure 6.shows that Mutation of fob1 suppresses the life span defect of a sir2 mutant.

complete

involved_in

GO:0045911

positive regulation of DNA recombination

PMID:25822194[4]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0090342

regulation of cell aging

PMID:25822194[4]

ECO:0000316

genetic interaction evidence used in manual assertion

SGD:S000004500

P

Seeded From UniProt

complete

involved_in

GO:0090342

regulation of cell aging

PMID:25822194[4]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0070550

rDNA condensation

PMID:18923139[5]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0007059

chromosome segregation

PMID:16769819[6]

ECO:0000316

genetic interaction evidence used in manual assertion

SGD:S000001924

P

Seeded From UniProt

complete

enables

GO:0043110

rDNA spacer replication fork barrier binding

PMID:14645529[7]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0043007

maintenance of rDNA

PMID:23593017[8]

ECO:0000316

genetic interaction evidence used in manual assertion

SGD:S000003925

P

Seeded From UniProt

complete

involved_in

GO:0034503

protein localization to nucleolar rDNA repeats

PMID:19362534[9]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0033553

rDNA heterochromatin

PMID:22362748[10]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0008156

negative regulation of DNA replication

PMID:14645529[7]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0007580

extrachromosomal circular DNA accumulation involved in cell aging

PMID:10230397[2]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006310

DNA recombination

PMID:9078378[1]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0005730

nucleolus

PMID:10230397[2]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0001302

replicative cell aging

PMID:15722108[11]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0000183

chromatin silencing at rDNA

PMID:12923057[12]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0043110

rDNA spacer replication fork barrier binding

PMID:26951198[13]

ECO:0000315

mutant phenotype evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0000183

chromatin silencing at rDNA

PMID:26951198[13]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0031582

replication fork arrest at rDNA repeats

PMID:26951198[13]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006325

chromatin organization

PMID:26951198[13]

ECO:0000316

genetic interaction evidence used in manual assertion

SGD:S000002200

P

Seeded From UniProt

complete

involved_in

GO:0090579

dsDNA loop formation

PMID:26951198[13]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006310

DNA recombination

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0233

P

Seeded From UniProt

complete

enables

GO:0003677

DNA binding

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0238

F

Seeded From UniProt

complete

enables

GO:0046872

metal ion binding

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0479

F

Seeded From UniProt

complete

involved_in

GO:0006260

DNA replication

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0235

P

Seeded From UniProt

complete

part_of

GO:0005634

nucleus

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0539

C

Seeded From UniProt

complete

part_of

GO:0005730

nucleolus

GO_REF:0000039

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-SubCell:SL-0188

C

Seeded From UniProt

complete

Notes

References

See Help:References for how to manage references in GONUTS.

  1. 1.0 1.1 1.2 Kobayashi, T & Horiuchi, T (1996) A yeast gene product, Fob1 protein, required for both replication fork blocking and recombinational hotspot activities. Genes Cells 1 465-74 PubMed GONUTS page
  2. 2.0 2.1 2.2 Defossez, PA et al. (1999) Elimination of replication block protein Fob1 extends the life span of yeast mother cells. Mol. Cell 3 447-55 PubMed GONUTS page
  3. 3.0 3.1 Kaeberlein, M et al. (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13 2570-80 PubMed GONUTS page
  4. 4.0 4.1 4.2 Peng, J et al. (2015) Inhibition of telomere recombination by inactivation of KEOPS subunit Cgi121 promotes cell longevity. PLoS Genet. 11 e1005071 PubMed GONUTS page
  5. Waples, WG et al. (2009) Putting the brake on FEAR: Tof2 promotes the biphasic release of Cdc14 phosphatase during mitotic exit. Mol. Biol. Cell 20 245-55 PubMed GONUTS page
  6. Machín, F et al. (2006) Transcription of ribosomal genes can cause nondisjunction. J. Cell Biol. 173 893-903 PubMed GONUTS page
  7. 7.0 7.1 Kobayashi, T (2003) The replication fork barrier site forms a unique structure with Fob1p and inhibits the replication fork. Mol. Cell. Biol. 23 9178-88 PubMed GONUTS page
  8. Ide, S et al. (2013) Rtt109 prevents hyper-amplification of ribosomal RNA genes through histone modification in budding yeast. PLoS Genet. 9 e1003410 PubMed GONUTS page
  9. Johzuka, K & Horiuchi, T (2009) The cis element and factors required for condensin recruitment to chromosomes. Mol. Cell 34 26-35 PubMed GONUTS page
  10. Ha, CW et al. (2012) Nsi1 plays a significant role in the silencing of ribosomal DNA in Saccharomyces cerevisiae. Nucleic Acids Res. 40 4892-903 PubMed GONUTS page
  11. Kaeberlein, M et al. (2005) Genes determining yeast replicative life span in a long-lived genetic background. Mech. Ageing Dev. 126 491-504 PubMed GONUTS page
  12. Huang, J & Moazed, D (2003) Association of the RENT complex with nontranscribed and coding regions of rDNA and a regional requirement for the replication fork block protein Fob1 in rDNA silencing. Genes Dev. 17 2162-76 PubMed GONUTS page
  13. 13.0 13.1 13.2 13.3 13.4 Zaman, S et al. (2016) Mechanism of Regulation of Intrachromatid Recombination and Long-Range Chromosome Interactions in Saccharomyces cerevisiae. Mol. Cell. Biol. 36 1451-63 PubMed GONUTS page