GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.
PMID:12601157
Citation |
Bina, J, Zhu, J, Dziejman, M, Faruque, S, Calderwood, S and Mekalanos, J (2003) ToxR regulon of Vibrio cholerae and its expression in vibrios shed by cholera patients. Proc. Natl. Acad. Sci. U.S.A. 100:2801-6 |
---|---|
Abstract |
Toxigenic Vibrio cholerae cause cholera, a severe diarrheal disease responsible for significant morbidity and mortality worldwide. Two determinants, cholera enterotoxin (CT) and toxin coregulated pilus (TCP) are critical factors responsible for this organism's virulence. The genes for these virulence determinants belong to a network of genes (the ToxR regulon) whose expression is modulated by transcriptional regulators encoded by the toxRS, tcpPH, and toxT genes. To define the ToxR regulon more fully, mutants defective in these regulatory genes were transcriptionally profiled by using V. cholerae genomic microarrays. This study identified 13 genes that were transcriptionally repressed by the toxT mutation (all involved in CT and TCP biogenesis), and 27 and 60 genes that were transcriptionally repressed by the tcpPH and toxRS mutations, respectively. During the course of this analysis, we validated the use of a genomic DNA-based reference sample as a means to standardize and normalize data obtained in different microarray experiments. This method allowed the accurate transcriptional profiling of V. cholerae cells present in stools from cholera patients and the comparison of these profiles to those of wild-type and mutant strains of V. cholerae grown under optimal conditions for CT and TCP expression. Our results suggest that vibrios present in cholera stools carry transcripts for these two virulence determinants, albeit at relatively low levels compared with optimal in vitro conditions. The transcriptional profile of vibrios present in cholera stools also suggests that the bacteria experienced conditions of anaerobiosis, iron limitation, and nutrient deprivation within the human gastrointestinal tract. |
Links |
PubMed PMC151421 Online version:10.1073/pnas.2628026100 |
Keywords |
Bacterial Proteins; Cholera/metabolism; Cholera/microbiology; DNA, Complementary/metabolism; DNA-Binding Proteins/metabolism; Digestive System/microbiology; Genetic Techniques; Humans; Mutation; Oligonucleotide Array Sequence Analysis; RNA/analysis; RNA, Messenger/metabolism; Transcription Factors/metabolism; Transcription, Genetic; Vibrio cholerae/genetics; Vibrio cholerae/metabolism |
edit table |
Significance
Annotations
Gene product | Qualifier | GO Term | Evidence Code | with/from | Aspect | Extension | Notes | Status |
---|---|---|---|---|---|---|---|---|
GO:2000145: regulation of cell motility |
ECO:0000270: |
P |
Table 1. Top right of page 2805 |
complete | ||||
GO:0090087 : regulation of peptide transport |
ECO:0000315: |
P |
Table 1. Top of page 2805 gives more information about specific pathways. |
complete | ||||
GO:0090087: regulation of peptide transport |
ECO:0000270: |
P |
Table 1. Top of page 2805 gives more information about specific pathways. |
complete | ||||
GO:0010675: regulation of cellular carbohydrate metabolic process |
ECO:0000315: |
P |
Table 1. Top right of page 2805. |
complete | ||||
GO:0010675: regulation of cellular carbohydrate metabolic process |
ECO:0000270: |
P |
Table 1. Top right of page 2805. |
complete | ||||
See also
References
See Help:References for how to manage references in GONUTS.