GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

ECOLI:MREB

From GONUTS
Jump to: navigation, search
Species (Taxon ID) Escherichia coli (strain K12). (83333)
Gene Name(s) mreB (synonyms: envB, rodY)
Protein Name(s) Rod shape-determining protein MreB
External Links
UniProt P0A9X4
EMBL M22055
U18997
U00096
AP009048
M31792
RefSeq NP_417717.2
YP_491434.1
ProteinModelPortal P0A9X4
SMR P0A9X4
DIP DIP-31874N
IntAct P0A9X4
MINT MINT-1222190
STRING 511145.b3251
TCDB 9.B.157.1.3
PaxDb P0A9X4
PRIDE P0A9X4
EnsemblBacteria AAC76283
BAE77293
GeneID 12932946
948588
KEGG ecj:Y75_p3170
eco:b3251
PATRIC 32121928
EchoBASE EB0603
EcoGene EG10608
eggNOG COG1077
HOGENOM HOG000019757
InParanoid P0A9X4
KO K03569
OMA GIVCDKS
OrthoDB EOG66QM00
PhylomeDB P0A9X4
BioCyc EcoCyc:EG10608-MONOMER
ECOL316407:JW3220-MONOMER
PRO PR:P0A9X4
Proteomes UP000000318
UP000000625
Genevestigator P0A9X4
GO GO:0005856
GO:0042802
GO:0000902
GO:0051782
GO:0008360
GO:0051983
InterPro IPR004753
Pfam PF06723
PRINTS PR01652
TIGRFAMs TIGR00904

Annotations

Qualifier GO ID GO term name Reference ECO ID ECO term name with/from Aspect Extension Notes Status
GO:0005200

cytoskeleton

PMID:20439764[1]

ECO:0000314

C

Fig. 2. The force-displacement curves and bending stiffness of single E. coli cells., Fig. 3. Statistics on the A22-induced decrease in flexural rigidity.

complete

GO:0000902

cell morphogenesis

PMID:20439764[1]

ECO:0000314

P

Fig. 2. The force-displacement curves and bending stiffness of single E. coli cells., Fig. 3. Statistics on the A22-induced decrease in flexural rigidity.

complete

GO:0009408

response to heat

PMID:2822655[2]

ECO:0000315

P

Table 2. Cell shapes and sensitivities of mre mutants to P-lactam antibiotics by temperature.

complete

GO:0005856

cytoskeleton

PMID:11544518[3]

ECO:0000250

pdb:1ATN


C

Figure 3. Structural similarity of MreB to actin.

complete

GO:0005200

structural constituent of cytoskeleton

PMID:19346310[4]

ECO:0000270

F

Fig 2

complete
CACAO 3675

GO:0043164

Gram-negative-bacterium-type cell wall biogenesis

PMID:19346310[4]

ECO:0000316

UniProtKB:P0A9A6


P

Table 1 Strain 2 MreB can tether peptidoglycan synthesis via a PBP2 pathway independently of FtsZ, producing a rod-shaped cell

complete
CACAO 3943

GO:0051782

negative regulation of cell division

PMID:2656641[5]

ECO:0000315

P

Figure 4A. shows filamentous cell growth in strains carrying additional copies of mreB gene, a result of inhibition of cell division.

Table 1. shows overproduction of cell division gene ftsI in mreB mutant cells.

complete
CACAO 5363

involved_in

GO:0051782

negative regulation of cell division

PMID:2656641[5]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0042802

identical protein binding

PMID:23756461[6]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:P0A9X4

F

occurs_in:(GO:0030428)

Seeded From UniProt

complete

enables

GO:0042802

identical protein binding

PMID:22515815[7]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:P0A9X4

F

occurs_in:(GO:0030428)

Seeded From UniProt

complete

involved_in

GO:0051983

regulation of chromosome segregation

PMID:19187760[8]

ECO:0000316

genetic interaction evidence used in manual assertion

EcoliWiki:mreC
EcoliWiki:mreD

P

Seeded From UniProt

complete

involved_in

GO:0051983

regulation of chromosome segregation

PMID:14517265[9]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0043093

FtsZ-dependent cytokinesis

PMID:23756461[6]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0043093

FtsZ-dependent cytokinesis

PMID:23756461[6]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0042802

identical protein binding

PMID:15612918[10]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

part_of

GO:0031226

intrinsic component of plasma membrane

PMID:21816350[11]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0008360

regulation of cell shape

PMID:17993535[12]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0008360

regulation of cell shape

PMID:15612918[10]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0005886

plasma membrane

PMID:15612918[10]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0005856

cytoskeleton

PMID:19220747[13]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0005856

cytoskeleton

PMID:14517265[9]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0005856

cytoskeleton

PMID:12766229[14]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0000902

cell morphogenesis

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR004753

P

Seeded From UniProt

complete

involved_in

GO:0008360

regulation of cell shape

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0133

P

Seeded From UniProt

complete

part_of

GO:0005737

cytoplasm

GO_REF:0000037
GO_REF:0000039

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0963
UniProtKB-SubCell:SL-0086

C

Seeded From UniProt

complete

enables

GO:0000166

nucleotide binding

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0547

F

Seeded From UniProt

complete

enables

GO:0005524

ATP binding

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0067

F

Seeded From UniProt

complete

Notes

References

See Help:References for how to manage references in GONUTS.

  1. 1.0 1.1 Wang, S et al. (2010) Actin-like cytoskeleton filaments contribute to cell mechanics in bacteria. Proc. Natl. Acad. Sci. U.S.A. 107 9182-5 PubMed GONUTS page
  2. Wachi, M et al. (1987) Mutant isolation and molecular cloning of mre genes, which determine cell shape, sensitivity to mecillinam, and amount of penicillin-binding proteins in Escherichia coli. J. Bacteriol. 169 4935-40 PubMed GONUTS page
  3. van den Ent, F et al. (2001) Prokaryotic origin of the actin cytoskeleton. Nature 413 39-44 PubMed GONUTS page
  4. 4.0 4.1 Varma, A & Young, KD (2009) In Escherichia coli, MreB and FtsZ direct the synthesis of lateral cell wall via independent pathways that require PBP 2. J. Bacteriol. 191 3526-33 PubMed GONUTS page
  5. 5.0 5.1 Wachi, M & Matsuhashi, M (1989) Negative control of cell division by mreB, a gene that functions in determining the rod shape of Escherichia coli cells. J. Bacteriol. 171 3123-7 PubMed GONUTS page
  6. 6.0 6.1 6.2 Fenton, AK & Gerdes, K (2013) Direct interaction of FtsZ and MreB is required for septum synthesis and cell division in Escherichia coli. EMBO J. 32 1953-65 PubMed GONUTS page
  7. Masuda, H et al. (2012) YeeU enhances the bundling of cytoskeletal polymers of MreB and FtsZ, antagonizing the CbtA (YeeV) toxicity in Escherichia coli. Mol. Microbiol. 84 979-89 PubMed GONUTS page
  8. Madabhushi, R & Marians, KJ (2009) Actin homolog MreB affects chromosome segregation by regulating topoisomerase IV in Escherichia coli. Mol. Cell 33 171-80 PubMed GONUTS page
  9. 9.0 9.1 Kruse, T et al. (2003) Dysfunctional MreB inhibits chromosome segregation in Escherichia coli. EMBO J. 22 5283-92 PubMed GONUTS page
  10. 10.0 10.1 10.2 Kruse, T et al. (2005) The morphogenetic MreBCD proteins of Escherichia coli form an essential membrane-bound complex. Mol. Microbiol. 55 78-89 PubMed GONUTS page
  11. Salje, J et al. (2011) Direct membrane binding by bacterial actin MreB. Mol. Cell 43 478-87 PubMed GONUTS page
  12. Bendezú, FO & de Boer, PA (2008) Conditional lethality, division defects, membrane involution, and endocytosis in mre and mrd shape mutants of Escherichia coli. J. Bacteriol. 190 1792-811 PubMed GONUTS page
  13. Vats, P et al. (2009) Assembly of the MreB-associated cytoskeletal ring of Escherichia coli. Mol. Microbiol. 72 170-82 PubMed GONUTS page
  14. Shih, YL et al. (2003) Division site selection in Escherichia coli involves dynamic redistribution of Min proteins within coiled structures that extend between the two cell poles. Proc. Natl. Acad. Sci. U.S.A. 100 7865-70 PubMed GONUTS page