GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

DROME:MLE

From GONUTS
Jump to: navigation, search
Species (Taxon ID) Drosophila melanogaster (Fruit fly). (7227)
Gene Name(s) mle (synonyms: nap)
Protein Name(s) Dosage compensation regulator

ATP-dependent RNA helicase mle Protein male-less Protein maleless Protein no action potential

External Links
UniProt P24785
EMBL M74121
AE013599
AE013599
BT003785
BT010267
PIR B40025
RefSeq NP_476641.1
NP_724440.1
UniGene Dm.2901
ProteinModelPortal P24785
SMR P24785
BioGrid 61429
IntAct P24785
MINT MINT-768581
PaxDb P24785
PRIDE P24785
EnsemblMetazoa FBtr0086031
GeneID 35523
KEGG dme:Dmel_CG11680
CTD 35523
FlyBase FBgn0002774
eggNOG COG1643
GeneTree ENSGT00760000119189
InParanoid P24785
KO K13184
OMA VDDWIRL
OrthoDB EOG76471V
PhylomeDB P24785
Reactome REACT_181701
REACT_181718
REACT_181720
REACT_227819
GenomeRNAi 35523
NextBio 793836
PRO PR:P24785
Proteomes UP000000803
Bgee P24785
ExpressionAtlas P24785
GO GO:0000785
GO:0005694
GO:0072487
GO:0005700
GO:0000805
GO:0016456
GO:0005524
GO:0008026
GO:0003682
GO:0003725
GO:0004386
GO:0003723
GO:0003724
GO:0006200
GO:0048675
GO:0008340
GO:0007549
GO:0009047
GO:0016457
GO:0045433
GO:0008152
GO:0031453
GO:0045944
Gene3D 3.30.160.20
3.40.50.300
InterPro IPR011545
IPR002464
IPR014720
IPR011709
IPR007502
IPR014001
IPR001650
IPR027417
Pfam PF00270
PF00035
PF04408
PF00271
PF07717
SMART SM00487
SM00358
SM00847
SM00490
SUPFAM SSF52540
PROSITE PS00690
PS50137
PS51192
PS51194

Annotations

Qualifier GO ID GO term name Reference ECO ID ECO term name with/from Aspect Extension Notes Status

part_of

GO:1990904

ribonucleoprotein complex

GO_REF:0000024

ECO:0000250

sequence similarity evidence used in manual assertion

UniProtKB:Q08211

C

Seeded From UniProt

complete

enables

GO:0004003

ATP-dependent DNA helicase activity

GO_REF:0000024

ECO:0000250

sequence similarity evidence used in manual assertion

UniProtKB:Q08211

F

Seeded From UniProt

complete

enables

GO:0003725

double-stranded RNA binding

GO_REF:0000024

ECO:0000250

sequence similarity evidence used in manual assertion

UniProtKB:Q08211

F

Seeded From UniProt

complete

enables

GO:0003690

double-stranded DNA binding

GO_REF:0000024

ECO:0000250

sequence similarity evidence used in manual assertion

UniProtKB:Q08211

F

Seeded From UniProt

complete

involved_in

GO:2000373

positive regulation of DNA topoisomerase (ATP-hydrolyzing) activity

GO_REF:0000024

ECO:0000250

sequence similarity evidence used in manual assertion

UniProtKB:Q08211

P

Seeded From UniProt

complete

involved_in

GO:0032508

DNA duplex unwinding

GO_REF:0000024

ECO:0000250

sequence similarity evidence used in manual assertion

UniProtKB:Q08211

P

Seeded From UniProt

complete

involved_in

GO:2000765

regulation of cytoplasmic translation

GO_REF:0000024

ECO:0000250

sequence similarity evidence used in manual assertion

UniProtKB:Q08211

P

Seeded From UniProt

complete

involved_in

GO:0050684

regulation of mRNA processing

GO_REF:0000024

ECO:0000250

sequence similarity evidence used in manual assertion

UniProtKB:Q08211

P

Seeded From UniProt

complete

enables

GO:0001069

regulatory region RNA binding

PMID:28355180[1]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

part_of

GO:1990904

ribonucleoprotein complex

PMID:21873635[2]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

PANTHER:PTN001053532
UniProtKB:Q08211

C

Seeded From UniProt

complete

involved_in

GO:0050684

regulation of mRNA processing

PMID:21873635[2]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

PANTHER:PTN001053532
UniProtKB:Q08211

P

Seeded From UniProt

complete

involved_in

GO:0045944

positive regulation of transcription by RNA polymerase II

PMID:21873635[2]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

FB:FBgn0002774
PANTHER:PTN001053532
UniProtKB:Q08211

P

Seeded From UniProt

complete

enables

GO:0043140

ATP-dependent 3'-5' DNA helicase activity

PMID:21873635[2]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

PANTHER:PTN001053532
UniProtKB:Q08211
UniProtKB:Q28141

F

Seeded From UniProt

complete

enables

GO:0034459

ATP-dependent 3'-5' RNA helicase activity

PMID:21873635[2]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

PANTHER:PTN001449167
UniProtKB:Q08211

F

Seeded From UniProt

complete

part_of

GO:0005730

nucleolus

PMID:21873635[2]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

MGI:MGI:108177
PANTHER:PTN001053532

C

Seeded From UniProt

complete

part_of

GO:0005634

nucleus

PMID:21873635[2]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

FB:FBgn0002774
FB:FBgn0003483
MGI:MGI:1921941
PANTHER:PTN000717298
TAIR:locus:2009200
UniProtKB:Q08211
UniProtKB:Q8NDG6
UniProtKB:Q9H2U1

C

Seeded From UniProt

complete

enables

GO:0004003

ATP-dependent DNA helicase activity

PMID:21873635[2]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

PANTHER:PTN001053532
UniProtKB:Q08211

F

Seeded From UniProt

complete

enables

GO:0003723

RNA binding

PMID:21873635[2]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

FB:FBgn0002774
PANTHER:PTN000433338
PomBase:SPBC1711.17
UniProtKB:Q08211
UniProtKB:Q28141

F

Seeded From UniProt

complete

part_of

GO:0000228

nuclear chromosome

PMID:25501352[3]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0007549

dosage compensation

PMID:25158899[4]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0072487

MSL complex

PMID:23084835[5]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

enables

GO:0003723

RNA binding

PMID:23084835[5]

ECO:0000353

physical interaction evidence used in manual assertion

FB:FBgn0019660

F

Seeded From UniProt

complete

involved_in

GO:0031453

positive regulation of heterochromatin assembly

PMID:18451980[6]

ECO:0000316

genetic interaction evidence used in manual assertion

FB:FBgn0003598

P

Seeded From UniProt

complete

part_of

GO:0000805

X chromosome

PMID:18562276[7]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0005829

cytosol

PMID:18360693[8]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0005634

nucleus

PMID:18360693[8]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0045944

positive regulation of transcription by RNA polymerase II

PMID:18360693[8]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0000805

X chromosome

PMID:16079233[9]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0008340

determination of adult lifespan

PMID:16272407[10]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0048675

axon extension

PMID:14960616[11]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0003724

RNA helicase activity

PMID:12717814[12]

ECO:0000303

author statement without traceable support used in manual assertion

F

Seeded From UniProt

complete

GO:0034459

ATP-dependent 3'-5' RNA helicase activity

PMID:26545078[13]

ECO:0000315

F

Figure 1D shows the RNA unwinding (helicase) activity of the MLE protein. Two different double stranded RNA substrates are used: one has U-rich 3’ overhang, and the other one is blunt ended. When ATP is added, MLE is found to unwind effectively the dsRNA with e U-rich 3’ overhang (Top panel). In contrast, the blunt ended dsRNA was not separated, despite retaining some unwinding activity. When a deletion is made on MLE domain dsRBD2 (dsRNA binding domain), MLE loses completely its helicase activity (bottom panel). Figure S1C tested helicase activity of MLE with a dsRNA substrate with a 5’ single stranded extension, instead of the 3’ extension used in 1D. MLE did not unwind this substrate, proving that the directionality of MLE helicase activity is 3’ to 5’. MLE is an ATP dependent dsRNA helicase that has specificity for U-rich regions on its RNA substrate and requires a 3’ overhang for activity.

complete
CACAO 12148

enables

GO:0004386

helicase activity

PMID:10908586[14]

ECO:0000250

sequence similarity evidence used in manual assertion

F

Seeded From UniProt

Missing: with/from

enables

GO:0003725

double-stranded RNA binding

PMID:10908586[14]

ECO:0000250

sequence similarity evidence used in manual assertion

F

Seeded From UniProt

Missing: with/from

involved_in

GO:0009047

dosage compensation by hyperactivation of X chromosome

PMID:10648226[15]

ECO:0000303

author statement without traceable support used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0016456

X chromosome located dosage compensation complex, transcription activating

PMID:10648226[15]

ECO:0000303

author statement without traceable support used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0045433

male courtship behavior, veined wing generated song production

PMID:9504928[16]

ECO:0000316

genetic interaction evidence used in manual assertion

FB:FBgn0263111

P

Seeded From UniProt

complete

involved_in

GO:0009047

dosage compensation by hyperactivation of X chromosome

PMID:8970731[17]

ECO:0000303

author statement without traceable support used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0007549

dosage compensation

PMID:8288132[18]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0000785

chromatin

PMID:8288132[18]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

enables

GO:0003682

chromatin binding

PMID:8288132[18]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

part_of

GO:0005694

chromosome

PMID:8288132[18]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0005700

polytene chromosome

PMID:1653648[19]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

enables

GO:0003676

nucleic acid binding

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR011545

F

Seeded From UniProt

complete

enables

GO:0004386

helicase activity

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR007502

F

Seeded From UniProt

complete

enables

GO:0005524

ATP binding

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR011545

F

Seeded From UniProt

complete

involved_in

GO:0016457

dosage compensation complex assembly involved in dosage compensation by hyperactivation of X chromosome

PMID:12717814[12]

ECO:0000304

author statement supported by traceable reference used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0016456

X chromosome located dosage compensation complex, transcription activating

PMID:11178270[20]

ECO:0000304

author statement supported by traceable reference used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0007549

dosage compensation

PMID:8970731[17]

ECO:0000304

author statement supported by traceable reference used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0008026

ATP-dependent helicase activity

PMID:8288132[18]

ECO:0000304

author statement supported by traceable reference used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0005524

ATP binding

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0067

F

Seeded From UniProt

complete

part_of

GO:0005694

chromosome

GO_REF:0000037
GO_REF:0000039

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0158
UniProtKB-SubCell:SL-0468

C

Seeded From UniProt

complete

enables

GO:0000166

nucleotide binding

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0547

F

Seeded From UniProt

complete

enables

GO:0004386

helicase activity

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0347

F

Seeded From UniProt

complete

enables

GO:0016787

hydrolase activity

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0378

F

Seeded From UniProt

complete

part_of

GO:0005634

nucleus

GO_REF:0000037
GO_REF:0000039

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0539
UniProtKB-SubCell:SL-0191

C

Seeded From UniProt

complete

Notes

References

See Help:References for how to manage references in GONUTS.

  1. Aktaş, T et al. (2017) DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome. Nature 544 115-119 PubMed GONUTS page
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 Gaudet, P et al. (2011) Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Brief. Bioinformatics 12 449-62 PubMed GONUTS page
  3. Figueiredo, ML et al. (2014) Non-coding roX RNAs prevent the binding of the MSL-complex to heterochromatic regions. PLoS Genet. 10 e1004865 PubMed GONUTS page
  4. Militti, C et al. (2014) UNR facilitates the interaction of MLE with the lncRNA roX2 during Drosophila dosage compensation. Nat Commun 5 4762 PubMed GONUTS page
  5. 5.0 5.1 Hallacli, E et al. (2012) Msl1-mediated dimerization of the dosage compensation complex is essential for male X-chromosome regulation in Drosophila. Mol. Cell 48 587-600 PubMed GONUTS page
  6. Spierer, A et al. (2008) SU(VAR)3-7 links heterochromatin and dosage compensation in Drosophila. PLoS Genet. 4 e1000066 PubMed GONUTS page
  7. Smith, ER et al. (2008) Regulation of the transcriptional activity of poised RNA polymerase II by the elongation factor ELL. Proc. Natl. Acad. Sci. U.S.A. 105 8575-9 PubMed GONUTS page
  8. 8.0 8.1 8.2 Aratani, S et al. (2008) MLE activates transcription via the minimal transactivation domain in Drosophila. Int. J. Mol. Med. 21 469-76 PubMed GONUTS page
  9. Kotlikova, IV et al. (2006) The Drosophila dosage compensation complex binds to polytene chromosomes independently of developmental changes in transcription. Genetics 172 963-74 PubMed GONUTS page
  10. Fergestad, T et al. (2006) Neuropathology in Drosophila membrane excitability mutants. Genetics 172 1031-42 PubMed GONUTS page
  11. Zhong, Y & Wu, CF (2004) Neuronal activity and adenylyl cyclase in environment-dependent plasticity of axonal outgrowth in Drosophila. J. Neurosci. 24 1439-45 PubMed GONUTS page
  12. 12.0 12.1 Wutz, A (2003) RNAs templating chromatin structure for dosage compensation in animals. Bioessays 25 434-42 PubMed GONUTS page
  13. Prabu, JR et al. (2015) Structure of the RNA Helicase MLE Reveals the Molecular Mechanisms for Uridine Specificity and RNA-ATP Coupling. Mol. Cell 60 487-99 PubMed GONUTS page
  14. 14.0 14.1 Lasko, P (2000) The drosophila melanogaster genome: translation factors and RNA binding proteins. J. Cell Biol. 150 F51-6 PubMed GONUTS page
  15. 15.0 15.1 Schütt, C & Nöthiger, R (2000) Structure, function and evolution of sex-determining systems in Dipteran insects. Development 127 667-77 PubMed GONUTS page
  16. Peixoto, AA & Hall, JC (1998) Analysis of temperature-sensitive mutants reveals new genes involved in the courtship song of Drosophila. Genetics 148 827-38 PubMed GONUTS page
  17. 17.0 17.1 Williamson, A & Lehmann, R (1996) Germ cell development in Drosophila. Annu. Rev. Cell Dev. Biol. 12 365-91 PubMed GONUTS page
  18. 18.0 18.1 18.2 18.3 18.4 Bone, JR et al. (1994) Acetylated histone H4 on the male X chromosome is associated with dosage compensation in Drosophila. Genes Dev. 8 96-104 PubMed GONUTS page
  19. Kuroda, MI et al. (1991) The maleless protein associates with the X chromosome to regulate dosage compensation in Drosophila. Cell 66 935-47 PubMed GONUTS page
  20. Amrein, H (2000) Multiple RNA-protein interactions in Drosophila dosage compensation. Genome Biol. 1 REVIEWS1030 PubMed GONUTS page