GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

YEAST:SNF1

From GONUTS
Jump to: navigation, search
Species (Taxon ID) Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast). (559292)
Gene Name(s) SNF1 (synonyms: CAT1, CCR1, GLC2, PAS14)
Protein Name(s) Carbon catabolite-derepressing protein kinase
External Links
UniProt P06782
EMBL M13971
U33050
BK006938
PIR A26030
RefSeq NP_010765.3
PDB 2FH9
2QLV
3DAE
3HYH
3MN3
3T4N
3TDH
3TE5
PDBsum 2FH9
2QLV
3DAE
3HYH
3MN3
3T4N
3TDH
3TE5
ProteinModelPortal P06782
SMR P06782
BioGrid 32529
DIP DIP-18N
IntAct P06782
MINT MINT-364314
STRING 4932.YDR477W
MaxQB P06782
PaxDb P06782
PeptideAtlas P06782
EnsemblFungi [example_ID YDR477W]
GeneID 852088
KEGG sce:YDR477W
CYGD YDR477w
SGD S000002885
eggNOG COG0515
GeneTree ENSGT00760000118892
HOGENOM HOG000233016
InParanoid P06782
KO K12761
OMA MSSFSAY
OrthoDB EOG793BK1
BioCyc YEAST:G3O-30003-MONOMER
BRENDA 2.7.11.1
Reactome REACT_209479
REACT_212098
REACT_254023
REACT_260529
EvolutionaryTrace P06782
NextBio 970409
Proteomes UP000002311
Genevestigator P06782
GO GO:0031588
GO:0005737
GO:0000324
GO:0005641
GO:0031965
GO:0005634
GO:0004679
GO:0005524
GO:0004674
GO:0005975
GO:0007155
GO:0006995
GO:0071940
GO:0001403
GO:0017148
GO:1900436
GO:0045722
GO:0006468
GO:0007124
GO:0006109
GO:0001302
GO:0090606
InterPro IPR028375
IPR011009
IPR000719
IPR017441
IPR002290
IPR008271
IPR013896
Pfam PF00069
PF08587
SMART SM00220
SUPFAM SSF103243
SSF56112
PROSITE PS00107
PS50011
PS00108

Annotations

Qualifier GO ID GO term name Reference ECO ID ECO term name with/from Aspect Extension Notes Status
GO:0009758

carbohydrate utilization

PMID:7040163[1]

ECO:0000315

P

Table 4

complete

involved_in

GO:0000132

establishment of mitotic spindle orientation

PMID:29643469[2]

ECO:0000316

genetic interaction evidence used in manual assertion

SGD:S000001762
SGD:S000006190

P

happens_during:(GO:0000089)

Seeded From UniProt

complete

involved_in

GO:0000132

establishment of mitotic spindle orientation

PMID:29643469[2]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

happens_during:(GO:0000089)

Seeded From UniProt

complete

part_of

GO:0000144

cellular bud neck septin ring

PMID:29643469[2]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0005739

mitochondrion

PMID:16823961[3]

ECO:0007005

high throughput direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

enables

GO:0004672

protein kinase activity

PMID:16319894[4]

ECO:0007005

high throughput direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

part_of

GO:0005739

mitochondrion

PMID:14576278[5]

ECO:0007005

high throughput direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0006468

protein phosphorylation

PMID:16319894[4]

ECO:0007005

high throughput direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:2000222

positive regulation of pseudohyphal growth

PMID:12024013[6]

ECO:0000316

genetic interaction evidence used in manual assertion

SGD:S000000270,SGD:S000002450

P

Seeded From UniProt

complete

involved_in

GO:2000222

positive regulation of pseudohyphal growth

PMID:16980405[7]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006468

protein phosphorylation

PMID:27524664[8]

ECO:0000314

direct assay evidence used in manual assertion

P

has_direct_input:(UniProtKB:P27705)

Seeded From UniProt

complete

involved_in

GO:0006468

protein phosphorylation

PMID:27524664[8]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

has_direct_input:(UniProtKB:P27705)

Seeded From UniProt

complete

enables

GO:0004674

protein serine/threonine kinase activity

PMID:27524664[8]

ECO:0000314

direct assay evidence used in manual assertion

F

has_direct_input:(UniProtKB:P27705)

Seeded From UniProt

complete

enables

GO:0004674

protein serine/threonine kinase activity

PMID:27524664[8]

ECO:0000315

mutant phenotype evidence used in manual assertion

F

has_direct_input:(UniProtKB:P27705)

Seeded From UniProt

complete

involved_in

GO:0016239

positive regulation of macroautophagy

PMID:11486014[9]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006986

response to unfolded protein

PMID:25730376[10]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0005086

ARF guanyl-nucleotide exchange factor activity

PMID:26198097[11]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:1900436

positive regulation of filamentous growth of a population of unicellular organisms in response to starvation

PMID:22904036[12]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0071940

fungal-type cell wall assembly

PMID:24486034[13]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

happens_during:(GO:0033554)

Seeded From UniProt

complete

involved_in

GO:0045722

positive regulation of gluconeogenesis

PMID:8628258[14]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0045722

positive regulation of gluconeogenesis

PMID:9111319[15]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0045722

positive regulation of gluconeogenesis

PMID:8710504[16]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0090606

single-species surface biofilm formation

PMID:12024013[6]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0031588

nucleotide-activated protein kinase complex

PMID:9121458[17]

ECO:0000353

physical interaction evidence used in manual assertion

SGD:S000000829
SGD:S000002830
SGD:S000003083
SGD:S000003176

C

Seeded From UniProt

complete

part_of

GO:0031588

nucleotide-activated protein kinase complex

PMID:2481228[18]

ECO:0000353

physical interaction evidence used in manual assertion

SGD:S000003083

C

Seeded From UniProt

complete

part_of

GO:0031588

nucleotide-activated protein kinase complex

PMID:2481228[18]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0031588

nucleotide-activated protein kinase complex

PMID:12393914[19]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0017148

negative regulation of translation

PMID:18955495[20]

ECO:0000316

genetic interaction evidence used in manual assertion

SGD:S000000735
SGD:S000001905
SGD:S000002691

P

Seeded From UniProt

complete

involved_in

GO:0017148

negative regulation of translation

PMID:18955495[20]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0007155

cell adhesion

PMID:12556493[21]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:2000222

positive regulation of pseudohyphal growth

PMID:12024013[6]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006995

cellular response to nitrogen starvation

PMID:12024013[6]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006468

protein phosphorylation

PMID:11486005[22]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0005737

cytoplasm

PMID:17237508[23]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0005641

nuclear envelope lumen

PMID:17237508[23]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0005634

nucleus

PMID:17237508[23]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

enables

GO:0004679

AMP-activated protein kinase activity

PMID:7913470[24]

ECO:0000315

mutant phenotype evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0004679

AMP-activated protein kinase activity

PMID:2557546[25]

ECO:0000315

mutant phenotype evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0004679

AMP-activated protein kinase activity

PMID:11486005[22]

ECO:0000315

mutant phenotype evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0004674

protein serine/threonine kinase activity

PMID:7913470[24]

ECO:0000314

direct assay evidence used in manual assertion

F

happens_during:(GO:0042149)

Seeded From UniProt

complete

enables

GO:0004674

protein serine/threonine kinase activity

PMID:2557546[25]

ECO:0000314

direct assay evidence used in manual assertion

F

has_direct_input:(UniProtKB:P06782)

Seeded From UniProt

complete

enables

GO:0004674

protein serine/threonine kinase activity

PMID:11486005[22]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0001403

invasive growth in response to glucose limitation

PMID:11095711[26]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0001403

invasive growth in response to glucose limitation

PMID:12556493[21]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0001302

replicative cell aging

PMID:10921902[27]

ECO:0000316

genetic interaction evidence used in manual assertion

SGD:S000002830

P

Seeded From UniProt

complete

involved_in

GO:0001302

replicative cell aging

PMID:10921902[27]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0000324

fungal-type vacuole

PMID:11331606[28]

ECO:0000353

physical interaction evidence used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0035556

intracellular signal transduction

PMID:21873635[29]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

MGI:MGI:104754
MGI:MGI:2445031
PANTHER:PTN000678822
UniProtKB:P57059
UniProtKB:Q9H0K1
UniProtKB:Q9IA88

P

Seeded From UniProt

complete

involved_in

GO:0006468

protein phosphorylation

PMID:21873635[29]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

FB:FBgn0023169
FB:FBgn0261278
MGI:MGI:104754
MGI:MGI:1202065
MGI:MGI:1336173
MGI:MGI:1347352
MGI:MGI:1351488
MGI:MGI:1923020
MGI:MGI:2445031
MGI:MGI:3037705
PANTHER:PTN000678822
RGD:1359167
RGD:3387
RGD:620545
RGD:620893
RGD:69407
RGD:69653
SGD:S000000931
SGD:S000001531
SGD:S000001584
SGD:S000002529
SGD:S000002885
SGD:S000004086
SGD:S000005127
TAIR:locus:2094672
UniProtKB:O60285
UniProtKB:P57059
UniProtKB:Q13131
UniProtKB:Q6SA08
UniProtKB:Q8IWQ3
UniProtKB:Q8IY84
UniProtKB:Q8TDC3
UniProtKB:Q9BXA6
UniProtKB:Q9BXA7
UniProtKB:Q9H093
UniProtKB:Q9H0K1
UniProtKB:Q9IA88
UniProtKB:Q9NRH2

P

Seeded From UniProt

complete

part_of

GO:0005737

cytoplasm

PMID:21873635[29]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

MGI:MGI:104754
MGI:MGI:106924
MGI:MGI:1347559
MGI:MGI:2145955
MGI:MGI:2445031
PANTHER:PTN000678822
PomBase:SPAC23H4.02
PomBase:SPBC32C12.03c
PomBase:SPCC297.03
PomBase:SPCC74.03c
RGD:3387
RGD:620893
SGD:S000000601
SGD:S000000931
SGD:S000001124
SGD:S000001651
SGD:S000002885
SGD:S000003820
SGD:S000005127
SGD:S000006062
TAIR:locus:2009812
TAIR:locus:2032075
TAIR:locus:2140104
TAIR:locus:2174999
UniProtKB:O14757
UniProtKB:O60285
UniProtKB:P57059
UniProtKB:Q39192
UniProtKB:Q57YE4
UniProtKB:Q7XQP4
UniProtKB:Q8I3C7
UniProtKB:Q8IWQ3
UniProtKB:Q8TDC3
UniProtKB:Q940H6
UniProtKB:Q9IA88
WB:WBGene00002210
WB:WBGene00003919
WB:WBGene00020142
WB:WBGene00021012

C

Seeded From UniProt

complete

part_of

GO:0005634

nucleus

PMID:21873635[29]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

FB:FBgn0023169
FB:FBgn0261278
MGI:MGI:104754
MGI:MGI:1202065
MGI:MGI:1336173
MGI:MGI:2145955
MGI:MGI:2445031
PANTHER:PTN000678822
PomBase:SPAC23H4.02
PomBase:SPBC19C2.05
PomBase:SPCC74.03c
RGD:69407
RGD:69653
SGD:S000001124
SGD:S000002885
SGD:S000003820
SGD:S000005947
TAIR:locus:2009812
TAIR:locus:2032075
TAIR:locus:2140104
TAIR:locus:2159597
TAIR:locus:2160559
TAIR:locus:2174999
UniProtKB:O14757
UniProtKB:O60285
UniProtKB:P43291
UniProtKB:P57059
UniProtKB:Q39192
UniProtKB:Q5N942
UniProtKB:Q7XQP4
UniProtKB:Q8TDC3
UniProtKB:Q940H6
WB:WBGene00002210

C

Seeded From UniProt

complete

enables

GO:0004674

protein serine/threonine kinase activity

PMID:21873635[29]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

FB:FBgn0025625
MGI:MGI:104754
MGI:MGI:106924
MGI:MGI:1336173
MGI:MGI:1347559
MGI:MGI:1923020
MGI:MGI:2445031
MGI:MGI:2685946
PANTHER:PTN000678822
PomBase:SPAC57A10.02
PomBase:SPAC644.06c
PomBase:SPBC19C2.05
PomBase:SPBC4F6.06
PomBase:SPCC1020.10
PomBase:SPCC297.03
PomBase:SPCC74.03c
RGD:1359167
RGD:1563268
RGD:1566256
RGD:3387
RGD:620893
RGD:69407
RGD:69653
SGD:S000000931
SGD:S000001531
SGD:S000001584
SGD:S000002529
SGD:S000002885
SGD:S000004086
SGD:S000005127
SGD:S000005759
TAIR:locus:2009812
TAIR:locus:2094672
TAIR:locus:2102132
UniProtKB:O14757
UniProtKB:O60285
UniProtKB:P57059
UniProtKB:Q14680
UniProtKB:Q6SA08
UniProtKB:Q8IWQ3
UniProtKB:Q8IY84
UniProtKB:Q8TDC3
UniProtKB:Q96PF2
UniProtKB:Q9BXA6
UniProtKB:Q9BXA7
UniProtKB:Q9H093
UniProtKB:Q9H0K1
UniProtKB:Q9IA88
UniProtKB:Q9NRH2
UniProtKB:Q9STV4
WB:WBGene00003919

F

Seeded From UniProt

complete

enables

GO:0042802

identical protein binding

PMID:19474788[30]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:P06782

F

Seeded From UniProt

complete

enables

GO:0042802

identical protein binding

PMID:16531232[31]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:P06782

F

Seeded From UniProt

complete

enables

GO:0004672

protein kinase activity

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR000719
InterPro:IPR008271

F

Seeded From UniProt

complete

enables

GO:0004674

protein serine/threonine kinase activity

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR013896

F

Seeded From UniProt

complete

enables

GO:0005524

ATP binding

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR000719
InterPro:IPR017441

F

Seeded From UniProt

complete

involved_in

GO:0006468

protein phosphorylation

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR000719
InterPro:IPR008271

P

Seeded From UniProt

complete

enables

GO:0004674

protein serine/threonine kinase activity

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0723

F

Seeded From UniProt

complete

part_of

GO:0005737

cytoplasm

GO_REF:0000037
GO_REF:0000039

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0963
UniProtKB-SubCell:SL-0086

C

Seeded From UniProt

complete

enables

GO:0000166

nucleotide binding

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0547

F

Seeded From UniProt

complete

enables

GO:0016740

transferase activity

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0808

F

Seeded From UniProt

complete

enables

GO:0005524

ATP binding

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0067

F

Seeded From UniProt

complete

enables

GO:0016301

kinase activity

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0418

F

Seeded From UniProt

complete

part_of

GO:0005634

nucleus

GO_REF:0000037
GO_REF:0000039

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0539
UniProtKB-SubCell:SL-0191

C

Seeded From UniProt

complete

involved_in

GO:0016310

phosphorylation

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0418

P

Seeded From UniProt

complete

part_of

GO:0016020

membrane

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0472

C

Seeded From UniProt

complete

involved_in

GO:0005975

carbohydrate metabolic process

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0119

P

Seeded From UniProt

complete

part_of

GO:0031965

nuclear membrane

GO_REF:0000039

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-SubCell:SL-0182

C

Seeded From UniProt

complete

Notes

References

See Help:References for how to manage references in GONUTS.

  1. Carlson, M et al. (1981) Mutants of yeast defective in sucrose utilization. Genetics 98 25-40 PubMed GONUTS page
  2. 2.0 2.1 2.2 Tripodi, F et al. (2018) Snf1/AMPK is involved in the mitotic spindle alignment in Saccharomyces cerevisiae. Sci Rep 8 5853 PubMed GONUTS page
  3. Reinders, J et al. (2006) Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteomics. J. Proteome Res. 5 1543-54 PubMed GONUTS page
  4. 4.0 4.1 Ptacek, J et al. (2005) Global analysis of protein phosphorylation in yeast. Nature 438 679-84 PubMed GONUTS page
  5. Sickmann, A et al. (2003) The proteome of Saccharomyces cerevisiae mitochondria. Proc. Natl. Acad. Sci. U.S.A. 100 13207-12 PubMed GONUTS page
  6. 6.0 6.1 6.2 6.3 Kuchin, S et al. (2002) Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth, and diploid pseudohyphal differentiation. Mol. Cell. Biol. 22 3994-4000 PubMed GONUTS page
  7. Orlova, M et al. (2006) Nitrogen availability and TOR regulate the Snf1 protein kinase in Saccharomyces cerevisiae. Eukaryotic Cell 5 1831-7 PubMed GONUTS page
  8. 8.0 8.1 8.2 8.3 McCartney, RR et al. (2016) Activation and inhibition of Snf1 kinase activity by phosphorylation within the activation loop. Biochim. Biophys. Acta 1864 1518-28 PubMed GONUTS page
  9. Wang, Z et al. (2001) Antagonistic controls of autophagy and glycogen accumulation by Snf1p, the yeast homolog of AMP-activated protein kinase, and the cyclin-dependent kinase Pho85p. Mol. Cell. Biol. 21 5742-52 PubMed GONUTS page
  10. Ferrer-Dalmau, J et al. (2015) Protein kinase Snf1 is involved in the proper regulation of the unfolded protein response in Saccharomyces cerevisiae. Biochem. J. 468 33-47 PubMed GONUTS page
  11. Hsu, JW et al. (2015) Snf1/AMP-activated protein kinase activates Arf3p to promote invasive yeast growth via a non-canonical GEF domain. Nat Commun 6 7840 PubMed GONUTS page
  12. Karunanithi, S & Cullen, PJ (2012) The filamentous growth MAPK Pathway Responds to Glucose Starvation Through the Mig1/2 transcriptional repressors in Saccharomyces cerevisiae. Genetics 192 869-87 PubMed GONUTS page
  13. Backhaus, K et al. (2013) Mutations in SNF1 complex genes affect yeast cell wall strength. Eur. J. Cell Biol. 92 383-95 PubMed GONUTS page
  14. Lesage, P et al. (1996) Yeast SNF1 protein kinase interacts with SIP4, a C6 zinc cluster transcriptional activator: a new role for SNF1 in the glucose response. Mol. Cell. Biol. 16 1921-8 PubMed GONUTS page
  15. Randez-Gil, F et al. (1997) Glucose derepression of gluconeogenic enzymes in Saccharomyces cerevisiae correlates with phosphorylation of the gene activator Cat8p. Mol. Cell. Biol. 17 2502-10 PubMed GONUTS page
  16. Rahner, A et al. (1996) Dual influence of the yeast Cat1p (Snf1p) protein kinase on carbon source-dependent transcriptional activation of gluconeogenic genes by the regulatory gene CAT8. Nucleic Acids Res. 24 2331-7 PubMed GONUTS page
  17. Jiang, R & Carlson, M (1997) The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex. Mol. Cell. Biol. 17 2099-106 PubMed GONUTS page
  18. 18.0 18.1 Celenza, JL et al. (1989) Molecular analysis of the SNF4 gene of Saccharomyces cerevisiae: evidence for physical association of the SNF4 protein with the SNF1 protein kinase. Mol. Cell. Biol. 9 5045-54 PubMed GONUTS page
  19. Nath, N et al. (2002) Purification and characterization of Snf1 kinase complexes containing a defined Beta subunit composition. J. Biol. Chem. 277 50403-8 PubMed GONUTS page
  20. 20.0 20.1 Shirra, MK et al. (2008) A chemical genomics study identifies Snf1 as a repressor of GCN4 translation. J. Biol. Chem. 283 35889-98 PubMed GONUTS page
  21. 21.0 21.1 Vyas, VK et al. (2003) Snf1 kinases with different beta-subunit isoforms play distinct roles in regulating haploid invasive growth. Mol. Cell. Biol. 23 1341-8 PubMed GONUTS page
  22. 22.0 22.1 22.2 McCartney, RR & Schmidt, MC (2001) Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit. J. Biol. Chem. 276 36460-6 PubMed GONUTS page
  23. 23.0 23.1 23.2 Sarma, NJ et al. (2007) Glucose-responsive regulators of gene expression in Saccharomyces cerevisiae function at the nuclear periphery via a reverse recruitment mechanism. Genetics 175 1127-35 PubMed GONUTS page
  24. 24.0 24.1 Woods, A et al. (1994) Yeast SNF1 is functionally related to mammalian AMP-activated protein kinase and regulates acetyl-CoA carboxylase in vivo. J. Biol. Chem. 269 19509-15 PubMed GONUTS page
  25. 25.0 25.1 Celenza, JL & Carlson, M (1989) Mutational analysis of the Saccharomyces cerevisiae SNF1 protein kinase and evidence for functional interaction with the SNF4 protein. Mol. Cell. Biol. 9 5034-44 PubMed GONUTS page
  26. Cullen, PJ & Sprague, GF Jr (2000) Glucose depletion causes haploid invasive growth in yeast. Proc. Natl. Acad. Sci. U.S.A. 97 13619-24 PubMed GONUTS page
  27. 27.0 27.1 Ashrafi, K et al. (2000) Sip2p and its partner snf1p kinase affect aging in S. cerevisiae. Genes Dev. 14 1872-85 PubMed GONUTS page
  28. Vincent, O et al. (2001) Subcellular localization of the Snf1 kinase is regulated by specific beta subunits and a novel glucose signaling mechanism. Genes Dev. 15 1104-14 PubMed GONUTS page
  29. 29.0 29.1 29.2 29.3 29.4 Gaudet, P et al. (2011) Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Brief. Bioinformatics 12 449-62 PubMed GONUTS page
  30. Chen, L et al. (2009) Structural insight into the autoinhibition mechanism of AMP-activated protein kinase. Nature 459 1146-9 PubMed GONUTS page
  31. Nayak, V et al. (2006) Structure and dimerization of the kinase domain from yeast Snf1, a member of the Snf1/AMPK protein family. Structure 14 477-85 PubMed GONUTS page