GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

YEAST:HS104

From GONUTS
Jump to: navigation, search
Species (Taxon ID) Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast). (559292)
Gene Name(s) HSP104
Protein Name(s) Heat shock protein 104

Protein aggregation-remodeling factor HSP104

External Links
UniProt P31539
EMBL M67479
Z73131
Z73130
AY693002
X97560
BK006945
PIR S61476
RefSeq NP_013074.1
ProteinModelPortal P31539
SMR P31539
BioGrid 31226
DIP DIP-2252N
IntAct P31539
MINT MINT-530773
STRING 4932.YLL026W
SWISS-2DPAGE P31539
MaxQB P31539
PaxDb P31539
PeptideAtlas P31539
EnsemblFungi [example_ID YLL026W]
GeneID 850633
KEGG sce:YLL026W
CYGD YLL026w
SGD S000003949
eggNOG COG0542
GeneTree ENSGT00390000012961
HOGENOM HOG000218211
InParanoid P31539
OMA YINESEV
OrthoDB EOG7X6M7K
BioCyc YEAST:G3O-32130-MONOMER
SABIO-RK P31539
NextBio 966553
PRO PR:P31539
Proteomes UP000002311
ExpressionAtlas P31539
Genevestigator P31539
GO GO:0005737
GO:0005634
GO:0072380
GO:0043531
GO:0005524
GO:0042623
GO:0051087
GO:0051082
GO:0006200
GO:0070370
GO:0070389
GO:0001319
GO:0034975
GO:0043335
GO:0035617
GO:0070414
Gene3D 1.10.1780.10
3.40.50.300
InterPro IPR003593
IPR003959
IPR019489
IPR004176
IPR001270
IPR018368
IPR028299
IPR023150
IPR027417
Pfam PF00004
PF07724
PF02861
PF10431
PRINTS PR00300
SMART SM00382
SM01086
SUPFAM SSF52540
PROSITE PS00870
PS00871

Annotations

Qualifier GO ID GO term name Reference ECO ID ECO term name with/from Aspect Extension Notes Status
GO:0005737

cytoplasm

ECO:0000314

C

Source: SGD

Missing: reference

GO:0005634

nucleus

ECO:0000314

C

Source: SGD

Missing: reference

GO:0043531

ADP binding

ECO:0000315

F

Source: SGD

Missing: reference

GO:0005524

ATP binding

ECO:0000315

F

Source: SGD

Missing: reference

GO:0042623

ATPase activity, coupled

ECO:0000314

F

Source: SGD

Missing: reference

GO:0051087

chaperone binding

ECO:0000314

F

Source: SGD

Missing: reference

GO:0051082

unfolded protein binding

ECO:0000314

F

Source: SGD

Missing: reference

GO:0070370

cellular heat acclimation

ECO:0000315

P

Source: SGD

Missing: reference

GO:0070389

chaperone cofactor-dependent protein refolding

ECO:0000314

P

Source: SGD

Missing: reference

GO:0001319

inheritance of oxidatively modified protein...

ECO:0000316

P

Source: SGD

Missing: with/from, reference

GO:0034975

protein folding in endoplasmic reticulum

ECO:0000315

P

Source: SGD

Missing: reference

GO:0043335

protein unfolding

ECO:0000315

P

Source: SGD

Missing: reference

GO:0070414

trehalose metabolism in response to heat st...

ECO:0000315

P

Source: SGD

Missing: reference

part_of

GO:0005737

cytoplasm

PMID:22842922[1]

ECO:0007005

high throughput direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

GO:0009408

response to heat

22579450:22579450

ECO:0000314

P

Figure 3 represents assays on the amount of the protein present after heat was applied. Expression was measured using RNeasy Mini Kit. Selected primers were seen in table 1

complete
CACAO 8983

part_of

GO:0034399

nuclear periphery

PMID:25817432[2]

ECO:0000314

direct assay evidence used in manual assertion

C

exists_during:(GO:0006974)

Seeded From UniProt

complete

involved_in

GO:0035617

stress granule disassembly

PMID:24291094[3]

ECO:0000314

direct assay evidence used in manual assertion

P

happens_during:(GO:0034605)

Seeded From UniProt

complete

part_of

GO:0072380

TRC complex

PMID:20850366[4]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0070414

trehalose metabolism in response to heat stress

PMID:9797333[5]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0051085

chaperone cofactor-dependent protein refolding

PMID:9674429[6]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0070370

cellular heat acclimation

PMID:2188365[7]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0051087

chaperone binding

PMID:9674429[6]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0051082

unfolded protein binding

PMID:16135516[8]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0043531

ADP binding

PMID:11867765[9]

ECO:0000315

mutant phenotype evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0043335

protein unfolding

PMID:7984243[10]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0042623

ATPase activity, coupled

PMID:9674429[6]

ECO:0000315

mutant phenotype evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0042623

ATPase activity, coupled

PMID:16135516[8]

ECO:0000315

mutant phenotype evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0042623

ATPase activity, coupled

PMID:16135516[8]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0034975

protein folding in endoplasmic reticulum

PMID:10931304[11]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0005737

cytoplasm

PMID:10467108[12]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0005634

nucleus

PMID:10467108[12]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

enables

GO:0005524

ATP binding

PMID:11867765[9]

ECO:0000315

mutant phenotype evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0001319

inheritance of oxidatively modified proteins involved in replicative cell aging

PMID:17908928[13]

ECO:0000316

genetic interaction evidence used in manual assertion

SGD:S000002200

P

Seeded From UniProt

complete

involved_in

GO:0001319

inheritance of oxidatively modified proteins involved in replicative cell aging

PMID:17908928[13]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0042802

identical protein binding

PMID:21474779[14]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:P31539

F

Seeded From UniProt

complete

enables

GO:0042802

identical protein binding

PMID:20404203[15]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:P31539

F

Seeded From UniProt

complete

enables

GO:0005524

ATP binding

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR001270
InterPro:IPR003959
InterPro:IPR018368

F

Seeded From UniProt

complete

involved_in

GO:0019538

protein metabolic process

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR036628

P

Seeded From UniProt

complete

part_of

GO:0005634

nucleus

GO_REF:0000037
GO_REF:0000039

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0539
UniProtKB-SubCell:SL-0191

C

Seeded From UniProt

complete

enables

GO:0005524

ATP binding

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0067

F

Seeded From UniProt

complete

part_of

GO:0005737

cytoplasm

GO_REF:0000037
GO_REF:0000039

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0963
UniProtKB-SubCell:SL-0086

C

Seeded From UniProt

complete

enables

GO:0000166

nucleotide binding

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0547

F

Seeded From UniProt

complete

Notes

References

See Help:References for how to manage references in GONUTS.

  1. Tkach, JM et al. (2012) Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. Nat. Cell Biol. 14 966-76 PubMed GONUTS page
  2. Gallina, I et al. (2015) Cmr1/WDR76 defines a nuclear genotoxic stress body linking genome integrity and protein quality control. Nat Commun 6 6533 PubMed GONUTS page
  3. Cherkasov, V et al. (2013) Coordination of translational control and protein homeostasis during severe heat stress. Curr. Biol. 23 2452-62 PubMed GONUTS page
  4. Wang, F et al. (2010) A chaperone cascade sorts proteins for posttranslational membrane insertion into the endoplasmic reticulum. Mol. Cell 40 159-71 PubMed GONUTS page
  5. Iwahashi, H et al. (1998) Evidence for the interplay between trehalose metabolism and Hsp104 in yeast. Appl. Environ. Microbiol. 64 4614-7 PubMed GONUTS page
  6. 6.0 6.1 6.2 Glover, JR & Lindquist, S (1998) Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94 73-82 PubMed GONUTS page
  7. Sanchez, Y & Lindquist, SL (1990) HSP104 required for induced thermotolerance. Science 248 1112-5 PubMed GONUTS page
  8. 8.0 8.1 8.2 Bösl, B et al. (2005) Substrate binding to the molecular chaperone Hsp104 and its regulation by nucleotides. J. Biol. Chem. 280 38170-6 PubMed GONUTS page
  9. 9.0 9.1 Hattendorf, DA & Lindquist, SL (2002) Analysis of the AAA sensor-2 motif in the C-terminal ATPase domain of Hsp104 with a site-specific fluorescent probe of nucleotide binding. Proc. Natl. Acad. Sci. U.S.A. 99 2732-7 PubMed GONUTS page
  10. Parsell, DA et al. (1994) Protein disaggregation mediated by heat-shock protein Hsp104. Nature 372 475-8 PubMed GONUTS page
  11. Simola, M et al. (2000) Trehalose is required for conformational repair of heat-denatured proteins in the yeast endoplasmic reticulum but not for maintenance of membrane traffic functions after severe heat stress. Mol. Microbiol. 37 42-53 PubMed GONUTS page
  12. 12.0 12.1 Kawai, R et al. (1999) Direct evidence for the intracellular localization of Hsp104 in Saccharomyces cerevisiae by immunoelectron microscopy. Cell Stress Chaperones 4 46-53 PubMed GONUTS page
  13. 13.0 13.1 Erjavec, N et al. (2007) Accelerated aging and failure to segregate damaged proteins in Sir2 mutants can be suppressed by overproducing the protein aggregation-remodeling factor Hsp104p. Genes Dev. 21 2410-21 PubMed GONUTS page
  14. Miot, M et al. (2011) Species-specific collaboration of heat shock proteins (Hsp) 70 and 100 in thermotolerance and protein disaggregation. Proc. Natl. Acad. Sci. U.S.A. 108 6915-20 PubMed GONUTS page
  15. Lee, S et al. (2010) CryoEM structure of Hsp104 and its mechanistic implication for protein disaggregation. Proc. Natl. Acad. Sci. U.S.A. 107 8135-40 PubMed GONUTS page