GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.
PMID:25339733
Citation |
Carver, CM, Wu, X, Gangisetty, O and Reddy, DS (2014) Perimenstrual-like hormonal regulation of extrasynaptic δ-containing GABAA receptors mediating tonic inhibition and neurosteroid sensitivity. J. Neurosci. 34:14181-97 |
---|---|
Abstract |
Neurosteroids are endogenous regulators of neuronal excitability and seizure susceptibility. Neurosteroids, such as allopregnanolone (AP; 3α-hydroxy-5α-pregnan-20-one), exhibit enhanced anticonvulsant activity in perimenstrual catamenial epilepsy, a neuroendocrine condition in which seizures are clustered around the menstrual period associated with neurosteroid withdrawal (NSW). However, the molecular mechanisms underlying such enhanced neurosteroid sensitivity remain unclear. Neurosteroids are allosteric modulators of both synaptic (αβγ2-containing) and extrasynaptic (αβδ-containing) GABAA receptors, but they display greater sensitivity toward δ-subunit receptors in dentate gyrus granule cells (DGGCs). Here we report a novel plasticity of extrasynaptic δ-containing GABAA receptors in the dentate gyrus in a mouse perimenstrual-like model of NSW. In molecular and immunofluorescence studies, a significant increase occurred in δ subunits, but not α1, α2, β2, and γ2 subunits, in the dentate gyrus of NSW mice. Electrophysiological studies confirmed enhanced sensitivity to AP potentiation of GABA-gated currents in DGGCs, but not in CA1 pyramidal cells, in NSW animals. AP produced a greater potentiation of tonic currents in DGGCs of NSW animals, and such enhanced AP sensitivity was not evident in δ-subunit knock-out mice subjected to a similar withdrawal paradigm. In behavioral studies, mice undergoing NSW exhibited enhanced seizure susceptibility to hippocampus kindling. AP has enhanced anticonvulsant effects in fully kindled wild-type mice, but not δ-subunit knock-out mice, undergoing NSW-induced seizures, confirming δ-linked neurosteroid sensitivity. These results indicate that perimenstrual NSW is associated with striking upregulation of extrasynaptic, δ-containing GABAA receptors that mediate tonic inhibition and neurosteroid sensitivity in the dentate gyrus. These findings may represent a molecular rationale for neurosteroid therapy of catamenial epilepsy. |
Links |
PubMed PMC4205546 Online version:10.1523/JNEUROSCI.0596-14.2014 |
Keywords |
Animals; Female; Hippocampus/physiology; Menstrual Cycle/physiology; Mice; Mice, Inbred C57BL; Mice, Knockout; Neural Inhibition/physiology; Neurotransmitter Agents/physiology; Organ Culture Techniques; Receptors, GABA-A/physiology; Synapses/physiology |
Significance
Annotations
Gene product | Qualifier | GO Term | Evidence Code | with/from | Aspect | Extension | Notes | Status |
---|---|---|---|---|---|---|---|---|
GO:0030424: axon |
ECO:0000314: |
C |
Staining the antibody showed broad distribution of delta subunits (δ subunit) on the axon. Immunohistochemical distribution of delta subunit in hippocampal CA1 neurons top portion of figure 3 (referred to as 3A in text). GABA (uniprotID: Q9WV18). Mus musculus |
complete | ||||
GO:0043025: neuronal cell body |
ECO:0000314: |
C |
Staining the antibody showed broad distribution of delta subunits (δ subunit) on the soma. Immunohistochemical distribution of delta subunit in hippocampal CA1 neurons top portion of figure 3 (referred to as figure 3A within paper). GABA (uniprotID: Q9WV18). Mus musculus |
complete | ||||
GO:0030425: dendrite |
ECO:0000314: |
C |
Staining the antibody showed broad distribution of delta subunits (δ subunit) on dendritic regions. Immunohistochemical distribution of delta subunit in hippocampal CA1 neurons top portion of figure 3 (referred to as figure 3A within paper). GABA (uniprotID: Q9WV18). Mus musculus |
complete | ||||
GO:0051932: synaptic transmission, GABAergic |
ECO:0000314: |
P |
Figure 2 & 7, up-regulation of protein conferring sensitivity of synaptic activity |
complete | ||||
GO:0030424: axon |
ECO:0000314: |
C |
Staining the antibody showed broad distribution of delta subunits (δ subunit) on the axon. Immunohistochemical distribution of delta subunit in hippocampal CA1 neurons top portion of figure 3 (referred to as 3A in text). From UniProt: GABA(A) (uniprotID: P22933). Mus musculus |
complete | ||||
GO:0030425: dendrite |
ECO:0000314: |
C |
Staining the antibody showed broad distribution of delta subunits (δ subunit) on dendritic regions. Immunohistochemical distribution of delta subunit in hippocampal CA1 neurons top portion of figure 3 (referred to as figure 3A within paper). From UniProt: GABA(A) (uniprotID: P22933). Mus musculus |
complete | ||||
GO:0043025: neuronal cell body |
ECO:0000314: |
C |
Staining the antibody showed broad distribution of delta subunits (δ subunit) on the soma. Immunohistochemical distribution of delta subunit in hippocampal CA1 neurons top portion of figure 3 (referred to as figure 3A within paper). From UniProt: GABA(A) (uniprotID: P22933). Mus musculus |
complete | ||||
GO:0030424: axon |
ECO:0000314: |
C |
Staining the antibody showed broad distribution of delta subunits on the axon. Immunohistochemical distribution of delta subunit in hippocampal CA1 neurons top portion of figure 3 (referred to as 3A in text). CA1 (uniprotID: P13634). Mus musculus |
complete | ||||
GO:0043025: neuronal cell body |
ECO:0000314: |
C |
Staining the antibody showed broad distribution of delta subunits on the Soma. Immunohistochemical distribution of delta subunit in hippocampal CA1 neurons top portion of figure 3 (referred to as Figure 3A). CA1 (uniprotID: P13634). Mus musculus |
complete | ||||
GO:0030425: dendrite |
ECO:0000314: |
C |
Staining the antibody showed broad distribution of delta subunits on the dendritic regions. Immunohistochemical distribution of delta subunit in hippocampal CA1 neurons top portion of figure 3 (referred to as figure 3A in paper). CA1 (uniprotID: P13634). Mus musculus |
complete | ||||
Notes
See also
References
See Help:References for how to manage references in GONUTS.