GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.
PMID:22458729
Citation |
Marritt, SJ, Lowe, TG, Bye, J, McMillan, DG, Shi, L, Fredrickson, J, Zachara, J, Richardson, DJ, Cheesman, MR, Jeuken, LJ and Butt, JN (2012) A functional description of CymA, an electron-transfer hub supporting anaerobic respiratory flexibility in Shewanella. Biochem. J. 444:465-74 |
---|---|
Abstract |
CymA (tetrahaem cytochrome c) is a member of the NapC/NirT family of quinol dehydrogenases. Essential for the anaerobic respiratory flexibility of shewanellae, CymA transfers electrons from menaquinol to various dedicated systems for the reduction of terminal electron acceptors including fumarate and insoluble minerals of Fe(III). Spectroscopic characterization of CymA from Shewanella oneidensis strain MR-1 identifies three low-spin His/His co-ordinated c-haems and a single high-spin c-haem with His/H(2)O co-ordination lying adjacent to the quinol-binding site. At pH 7, binding of the menaquinol analogue, 2-heptyl-4-hydroxyquinoline-N-oxide, does not alter the mid-point potentials of the high-spin (approximately -240 mV) and low-spin (approximately -110, -190 and -265 mV) haems that appear biased to transfer electrons from the high- to low-spin centres following quinol oxidation. CymA is reduced with menadiol (E(m) = -80 mV) in the presence of NADH (E(m) = -320 mV) and an NADH-menadione (2-methyl-1,4-naphthoquinone) oxidoreductase, but not by menadiol alone. In cytoplasmic membranes reduction of CymA may then require the thermodynamic driving force from NADH, formate or H2 oxidation as the redox poise of the menaquinol pool in isolation is insufficient. Spectroscopic studies suggest that CymA requires a non-haem co-factor for quinol oxidation and that the reduced enzyme forms a 1:1 complex with its redox partner Fcc3 (flavocytochrome c3 fumarate reductase). The implications for CymA supporting the respiratory flexibility of shewanellae are discussed. |
Links |
PubMed Online version:10.1042/BJ20120197 |
Keywords |
Bacteria, Anaerobic/physiology; Cell Respiration/physiology; Cytochrome c Group/chemistry; Cytochrome c Group/physiology; Electron Transport/physiology; Oxidation-Reduction; Protein Binding/physiology; Shewanella/enzymology; Succinate Dehydrogenase/chemistry; Succinate Dehydrogenase/physiology |
edit table |
Significance
Annotations
Gene product | Qualifier | GO Term | Evidence Code | with/from | Aspect | Extension | Notes | Status |
---|---|---|---|---|---|---|---|---|
GO:0009233: menaquinone metabolic process |
ECO:0000314: |
P |
Figure 4 displays menaquinol binding activity, thus playing a role in menaquionone processes. |
complete | ||||
See also
References
See Help:References for how to manage references in GONUTS.