GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.
PMID:20698836
Citation |
Chang, N, Li, L, Hu, R, Shan, Y, Liu, B, Li, L, Wang, H, Feng, H, Wang, D, Cheung, C, Liao, M and Wan, Q (2010) Differential regulation of NMDA receptor function by DJ-1 and PINK1. Aging Cell 9:837-50 |
---|---|
Abstract |
Dysfunction of PTEN-induced kinase 1 (PINK1) or DJ-1 promotes neuronal death and is implicated in the pathogenesis of Parkinson's disease, but the underlying mechanisms remain unclear. Given the roles of N-methyl-d-aspartate receptor (NMDAr)-mediated neurotoxicity in various brain disorders including cerebral ischemia and neurodegenerative diseases, we investigated the effects of PINK1 and DJ-1 on NMDAr function. Using protein overexpression and knockdown approaches, we showed that PINK1 increased NMDAr-mediated whole-cell currents by enhancing the function of NR2A-containing NMDAr subtype (NR2ACNR). However, DJ-1 decreased NMDAr-mediated currents, which was mediated through the inhibition of both NR2ACNR and NR2B-containing NMDAr subtype (NR2BCNR). We revealed that the knockdown of DJ-1 enhanced PTEN expression, which not only potentiated NR2BCNR function but also increased PINK1 expression that led to NR2ACNR potentiation. These results indicate that NMDAr function is differentially regulated by DJ-1-dependent signal pathways DJ-1/PTEN/NR2BCNR and DJ-1/PTEN/PINK1/NR2ACNR. Our results further showed that the suppression of DJ-1, while promoted NMDA-induced neuronal death through the overactivation of PTEN/NR2BCNR-dependent cell death pathway, induced a neuroprotective effect to counteract DJ-1 dysfunction-mediated neuronal death signaling through activating PTEN/PINK1/NR2ACNR cell survival-promoting pathway. Thus, PINK1 acts with DJ-1 in a common pathway to regulate NMDAr-mediated neuronal death. This study suggests that the DJ-1/PTEN/NR2BCNR and DJ-1/PTEN/PINK1/NR2ACNR pathways may represent potential therapeutic targets for the development of neuroprotection strategy in the treatment of brain injuries and neurodegenerative diseases such as Parkinson's disease. |
Links |
PubMed Online version:10.1111/j.1474-9726.2010.00615.x |
Keywords |
Animals; Cell Death; Cell Survival; Microtubule-Associated Proteins/metabolism; Neurons/cytology; Organ Culture Techniques; Protein Deglycase DJ-1; Protein Kinases/metabolism; Rats; Rats, Wistar; Receptors, N-Methyl-D-Aspartate/metabolism; Signal Transduction |
Significance
Annotations
Gene product | Qualifier | GO Term | Evidence Code | with/from | Aspect | Extension | Notes | Status |
---|---|---|---|---|---|---|---|---|
involved_in |
GO:1901215: negative regulation of neuron death |
ECO:0000315: mutant phenotype evidence used in manual assertion |
P |
Seeded From UniProt |
complete | |||
involved_in |
GO:1904782: negative regulation of NMDA glutamate receptor activity |
ECO:0000315: mutant phenotype evidence used in manual assertion |
P |
Seeded From UniProt |
complete | |||
Notes
See also
References
See Help:References for how to manage references in GONUTS.