GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.
PMID:18817418
Citation |
Panay, AJ and Fitzpatrick, PF (2008) Kinetic isotope effects on aromatic and benzylic hydroxylation by Chromobacterium violaceum phenylalanine hydroxylase as probes of chemical mechanism and reactivity. Biochemistry 47:11118-24 |
---|---|
Abstract |
Phenylalanine hydroxylase from Chromobacterium violaceum (CvPheH) is a non-heme iron monooxygenase that catalyzes the hydroxylation of phenylalanine to tyrosine. In this study, we used deuterium kinetic isotope effects to probe the chemical mechanisms of aromatic and benzylic hydroxylation to compare the reactivities of bacterial and eukaryotic aromatic amino acid hydroxylases. The (D) k cat value for the reaction of CvPheH with [(2)H 5]phenylalanine is 1.2 with 6-methyltetrahydropterin and 1.4 with 6,7-dimethyltetrahydropterin. With the mutant enzyme I234D, the (D) k cat value decreases to 0.9 with the latter pterin; this is likely to be the intrinsic effect for addition of oxygen to the amino acid. The isotope effect on the subsequent tautomerization of a dienone intermediate was determined to be 5.1 by measuring the retention of deuterium in tyrosine produced from partially deuterated phenylalanine; this large isotope effect is responsible for the normal effect on k cat. The isotope effect for hydroxylation of the methyl group of 4-CH 3-phenylalanine, obtained from the partitioning of benzylic and aromatic hydroxylation products, is 10. The temperature dependence of this isotope effect establishes the contribution of hydrogen tunneling to benzylic hydroxylation by this enzyme. The results presented here provide evidence that the reactivities of the prokaryotic and eukaryotic hydroxylases are similar and further define the reactivity of the iron center for the family of aromatic amino acid hydroxylases. |
Links |
PubMed PMC2603180 Online version:10.1021/bi801295w |
Keywords |
Chromobacterium/enzymology; Hydroxylation; Isotopes; Kinetics; Models, Chemical; Phenylalanine Hydroxylase/chemistry; Phenylalanine Hydroxylase/metabolism; Recombinant Proteins/chemistry; Recombinant Proteins/metabolism; Substrate Specificity; Thermodynamics |
edit table |
Significance
Annotations
Gene product | Qualifier | GO Term | Evidence Code | with/from | Aspect | Extension | Notes | Status |
---|---|---|---|---|---|---|---|---|
GO:0004505: phenylalanine 4-monooxygenase activity |
ECO:0000314: |
F |
Fig. 1 Phenylalanine hydroxylase catalytic activity increases as DTT concentration increases. |
complete | ||||
enables |
GO:0004505: phenylalanine 4-monooxygenase activity |
ECO:0000314: direct assay evidence used in manual assertion |
F |
Seeded From UniProt |
complete | |||
See also
References
See Help:References for how to manage references in GONUTS.