GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.
PMID:18726959
Citation |
Sillers, R, Al-Hinai, MA and Papoutsakis, ET (2009) Aldehyde-alcohol dehydrogenase and/or thiolase overexpression coupled with CoA transferase downregulation lead to higher alcohol titers and selectivity in Clostridium acetobutylicum fermentations. Biotechnol. Bioeng. 102:38-49 |
---|---|
Abstract |
Metabolic engineering (ME) of Clostridium acetobutylicum has led to increased solvent (butanol, acetone, and ethanol) production and solvent tolerance, thus demonstrating that further efforts have the potential to create strains of industrial importance. With recently developed ME tools, it is now possible to combine genetic modifications and thus implement more advanced ME strategies. We have previously shown that antisense RNA (asRNA)-based downregulation of CoA transferase (CoAT, the first enzyme in the acetone-formation pathway) results in increased butanol to acetone selectivity, but overall reduced butanol yields and titers. In this study the alcohol/aldehyde dehydrogenase (aad) gene (encoding the bifunctional protein AAD responsible for butanol and ethanol production from butyryl-CoA and acetyl-CoA, respectively) was expressed from the phosphotransbutyrylase (ptb) promoter to enhance butanol formation and selectivity, while CoAT downregulation was used to minimize acetone production. This led to early production of high alcohol (butanol plus ethanol) titers, overall solvent titers of 30 g/L, and a higher alcohol/acetone ratio. Metabolic flux analysis revealed the likely depletion of butyryl-CoA. In order to increase then the flux towards butyryl-CoA, we examined the impact of thiolase (THL, thl) overexpression. THL converts acetyl-CoA to acetoacetyl-CoA, the first step of the pathway from acetyl-CoA to butyryl-CoA, and thus, combining thl overexpression with aad overexpression decreased, as expected, acetate and ethanol production while increasing acetone and butyrate formation. thl overexpression in strains with asRNA CoAT downregulation did not significantly alter product formation thus suggesting that a more complex metabolic engineering strategy is necessary to enhance the intracellular butyryl-CoA pool and reduce the acetyl-CoA pool in order to achieve improved butanol titers and selectivity. |
Links |
PubMed Online version:10.1002/bit.22058 |
Keywords |
Acetone/metabolism; Acetyl-CoA C-Acetyltransferase/biosynthesis; Acyl Coenzyme A/metabolism; Aldehyde Dehydrogenase/biosynthesis; Bacterial Proteins/biosynthesis; Butanols/metabolism; Clostridium acetobutylicum/genetics; Clostridium acetobutylicum/metabolism; Ethanol/metabolism; Fermentation; Gene Expression; Metabolic Networks and Pathways/genetics |
edit table |
Significance
Annotations
Gene product | Qualifier | GO Term | Evidence Code | with/from | Aspect | Extension | Notes | Status |
---|---|---|---|---|---|---|---|---|
GO:0004022: alcohol dehydrogenase (NAD) activity |
ECO:0000314: |
F |
Figure 2 shows that overexpression of the alcohol/aldehyde dehydrogenase gene increased the production of butanol and ethanol. |
complete | ||||
enables |
GO:0004022: alcohol dehydrogenase (NAD) activity |
ECO:0000314: direct assay evidence used in manual assertion |
F |
Seeded From UniProt |
complete | |||
See also
References
See Help:References for how to manage references in GONUTS.