GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

MOUSE:HEPC

From GONUTS
Jump to: navigation, search
Species (Taxon ID) Mus musculus (Mouse). (10090)
Gene Name(s) Hamp (synonyms: Hamp1, Hepc, Hepc1)
Protein Name(s) Hepcidin
External Links
UniProt Q9EQ21
EMBL AF297664
AF503444
BC021587
CCDS CCDS39895.1
RefSeq NP_115930.1
UniGene Mm.439939
STRING 10090.ENSMUSP00000055404
TCDB 8.A.37.1.1
PaxDb Q9EQ21
PRIDE Q9EQ21
Ensembl ENSMUST00000062620
GeneID 84506
KEGG mmu:84506
UCSC uc009ghf.1
CTD 57817
MGI MGI:1933533
eggNOG NOG45549
GeneTree ENSGT00390000003154
HOGENOM HOG000008666
HOVERGEN HBG003716
InParanoid Q9EQ21
OMA PICIFCC
OrthoDB EOG7N8ZZ3
PhylomeDB Q9EQ21
TreeFam TF330932
NextBio 350906
PRO PR:Q9EQ21
Proteomes UP000000589
Bgee Q9EQ21
CleanEx MM_HAMP
Genevestigator Q9EQ21
GO GO:0005576
GO:0005615
GO:0005634
GO:0005507
GO:0006879
GO:0042742
GO:0050832
GO:0055072
GO:0007259
GO:0002262
GO:0045779
GO:0050728
GO:0034760
GO:1903364
GO:0043032
GO:0045944
InterPro IPR010500
Pfam PF06446

Annotations

Qualifier GO ID GO term name Reference ECO ID ECO term name with/from Aspect Extension Notes Status
GO:0033619

membrane protein proteolysis

PMID:15514116[1]

ECO:0000314

P

Figure 3 shows induction of ferroportin degradation.

complete
CACAO 6225

GO:0034760

negative regulation of iron ion transmembrane transport

PMID:15514116[1]

ECO:0000314

P

Fig. 3D. shows the internalization of Fpn with the introduction of Hepcidin leads to an increase in cellular iron.

complete
CACAO 7488

involved_in

GO:0000122

negative regulation of transcription by RNA polymerase II

PMID:18539898[2]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006879

cellular iron ion homeostasis

PMID:11447267[3]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0005576

extracellular region

PMID:11447267[3]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0042742

defense response to bacterium

PMID:21873635[4]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

MGI:MGI:1933533
PANTHER:PTN001047990

P

Seeded From UniProt

complete

involved_in

GO:0034760

negative regulation of iron ion transmembrane transport

PMID:21873635[4]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

MGI:MGI:1933533
PANTHER:PTN001047990

P

Seeded From UniProt

complete

involved_in

GO:0006879

cellular iron ion homeostasis

PMID:21873635[4]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

MGI:MGI:1933533
PANTHER:PTN001047990
RGD:70971
UniProtKB:P81172

P

Seeded From UniProt

complete

part_of

GO:0005615

extracellular space

PMID:21873635[4]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

MGI:MGI:1933533
PANTHER:PTN001047990
RGD:70971

C

Seeded From UniProt

complete

acts_upstream_of_or_within

GO:1903364

positive regulation of cellular protein catabolic process

PMID:21700773[5]

ECO:0000314

direct assay evidence used in manual assertion

P

  • regulates_o_has_input:(MGI:MGI:1315204)
  • regulates_o_occurs_in:(CL:0000765)

Seeded From UniProt

complete

acts_upstream_of_or_within

GO:0055072

iron ion homeostasis

PMID:24646470[6]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

occurs_in:(EMAPA:16846)

Seeded From UniProt

complete

acts_upstream_of_or_within

GO:0055072

iron ion homeostasis

PMID:24561287[7]

ECO:0000315

mutant phenotype evidence used in manual assertion

MGI:MGI:4351741

P

Seeded From UniProt

complete

acts_upstream_of_or_within

GO:0055072

iron ion homeostasis

PMID:24357728[8]

ECO:0000315

mutant phenotype evidence used in manual assertion

MGI:MGI:3701082

P

Seeded From UniProt

complete

acts_upstream_of_or_within

GO:0055072

iron ion homeostasis

PMID:23637785[9]

ECO:0000315

mutant phenotype evidence used in manual assertion

MGI:MGI:3701082

P

Seeded From UniProt

complete

acts_upstream_of_or_within

GO:0055072

iron ion homeostasis

PMID:22128145[10]

ECO:0000315

mutant phenotype evidence used in manual assertion

MGI:MGI:3701082

P

Seeded From UniProt

complete

acts_upstream_of_or_within

GO:0055072

iron ion homeostasis

PMID:20811044[11]

ECO:0000315

mutant phenotype evidence used in manual assertion

MGI:MGI:3701082

P

Seeded From UniProt

complete

acts_upstream_of_or_within

GO:0055072

iron ion homeostasis

PMID:20530874[12]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

acts_upstream_of_or_within

GO:0055072

iron ion homeostasis

PMID:16574947[13]

ECO:0000315

mutant phenotype evidence used in manual assertion

MGI:MGI:3701082

P

Seeded From UniProt

complete

acts_upstream_of_or_within

GO:0055072

iron ion homeostasis

PMID:20113314[14]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

acts_upstream_of_or_within

GO:0050832

defense response to fungus

PMID:2995362[15]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

acts_upstream_of_or_within

GO:0050728

negative regulation of inflammatory response

PMID:20530874[12]

ECO:0000316

genetic interaction evidence used in manual assertion

MGI:MGI:1201791

P

regulates_o_occurs_in:(CL:0000235)

Seeded From UniProt

complete

acts_upstream_of_or_within

GO:0045944

positive regulation of transcription by RNA polymerase II

PMID:18800028[16]

ECO:0000316

genetic interaction evidence used in manual assertion

MGI:MGI:103038
MGI:MGI:1315204
MGI:MGI:96629

P

  • regulates_o_occurs_in:(CL:0000235)
  • has_regulation_target:(MGI:MGI:96561)
  • has_regulation_target:(MGI:MGI:96562)

Seeded From UniProt

complete

acts_upstream_of_or_within

GO:0045779

negative regulation of bone resorption

PMID:24561287[7]

ECO:0000315

mutant phenotype evidence used in manual assertion

MGI:MGI:4351741

P

Seeded From UniProt

complete

acts_upstream_of_or_within

GO:0043032

positive regulation of macrophage activation

PMID:22383698[17]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

regulates_o_occurs_in:(EMAPA:35147)

Seeded From UniProt

complete

acts_upstream_of_or_within

GO:0042742

defense response to bacterium

PMID:23390527[18]

ECO:0000315

mutant phenotype evidence used in manual assertion

MGI:MGI:3701082

P

Seeded From UniProt

complete

acts_upstream_of_or_within

GO:0042742

defense response to bacterium

PMID:11113131[19]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

acts_upstream_of_or_within

GO:0034760

negative regulation of iron ion transmembrane transport

PMID:21700773[5]

ECO:0000316

genetic interaction evidence used in manual assertion

MGI:MGI:1315204

P

  • regulates_o_occurs_in:(CL:0000765)
  • occurs_in:(CL:0000765)

Seeded From UniProt

complete

acts_upstream_of_or_within

GO:0007259

receptor signaling pathway via JAK-STAT

PMID:20530874[12]

ECO:0000314

direct assay evidence used in manual assertion

P

occurs_in:(CL:0000235)

Seeded From UniProt

complete

part_of

GO:0005634

nucleus

PMID:11113132[20]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0005615

extracellular space

PMID:24357728[8]

ECO:0000314

direct assay evidence used in manual assertion

C

part_of:(EMAPA:35770)

Seeded From UniProt

complete

part_of

GO:0005615

extracellular space

PMID:17435114[21]

ECO:0000314

direct assay evidence used in manual assertion

C

part_of:(EMAPA:35770)

Seeded From UniProt

complete

enables

GO:0005507

copper ion binding

PMID:20113314[14]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

acts_upstream_of_or_within

GO:0002262

myeloid cell homeostasis

PMID:24357729[22]

ECO:0000315

mutant phenotype evidence used in manual assertion

MGI:MGI:3701082

P

Seeded From UniProt

complete

involved_in

GO:0010469

regulation of signaling receptor activity

GO_REF:0000108

ECO:0000366

evidence based on logical inference from automatic annotation used in automatic assertion

GO:0005179

P

Seeded From UniProt

complete

part_of

GO:0005576

extracellular region

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR010500

C

Seeded From UniProt

complete

involved_in

GO:0006879

cellular iron ion homeostasis

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR010500

P

Seeded From UniProt

complete

involved_in

GO:0031668

cellular response to extracellular stimulus

PMID:25860887[23]

ECO:0000304

author statement supported by traceable reference used in manual assertion

P

has_input:(CHEBI:18248)

Seeded From UniProt

complete

part_of

GO:0005576

extracellular region

GO_REF:0000037
GO_REF:0000039

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0964
UniProtKB-SubCell:SL-0243

C

Seeded From UniProt

complete

enables

GO:0005179

hormone activity

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0372

F

Seeded From UniProt

complete

Notes

References

See Help:References for how to manage references in GONUTS.

  1. 1.0 1.1 Nemeth, E et al. (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306 2090-3 PubMed GONUTS page
  2. Kautz, L et al. (2008) Iron regulates phosphorylation of Smad1/5/8 and gene expression of Bmp6, Smad7, Id1, and Atoh8 in the mouse liver. Blood 112 1503-9 PubMed GONUTS page
  3. 3.0 3.1 Nicolas, G et al. (2001) Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc. Natl. Acad. Sci. U.S.A. 98 8780-5 PubMed GONUTS page
  4. 4.0 4.1 4.2 4.3 Gaudet, P et al. (2011) Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Brief. Bioinformatics 12 449-62 PubMed GONUTS page
  5. 5.0 5.1 Zhang, DL et al. (2011) Hepcidin regulates ferroportin expression and intracellular iron homeostasis of erythroblasts. Blood 118 2868-77 PubMed GONUTS page
  6. Zumerle, S et al. (2014) Targeted disruption of hepcidin in the liver recapitulates the hemochromatotic phenotype. Blood 123 3646-50 PubMed GONUTS page
  7. 7.0 7.1 Sun, L et al. (2014) Hepcidin deficiency undermines bone load-bearing capacity through inducing iron overload. Gene 543 161-5 PubMed GONUTS page
  8. 8.0 8.1 Kim, A et al. (2014) A mouse model of anemia of inflammation: complex pathogenesis with partial dependence on hepcidin. Blood 123 1129-36 PubMed GONUTS page
  9. Deschemin, JC & Vaulont, S (2013) Role of hepcidin in the setting of hypoferremia during acute inflammation. PLoS ONE 8 e61050 PubMed GONUTS page
  10. Mastrogiannaki, M et al. (2012) Deletion of HIF-2α in the enterocytes decreases the severity of tissue iron loading in hepcidin knockout mice. Blood 119 587-90 PubMed GONUTS page
  11. Hadziahmetovic, M et al. (2011) Age-dependent retinal iron accumulation and degeneration in hepcidin knockout mice. Invest. Ophthalmol. Vis. Sci. 52 109-18 PubMed GONUTS page
  12. 12.0 12.1 12.2 De Domenico, I et al. (2010) Hepcidin mediates transcriptional changes that modulate acute cytokine-induced inflammatory responses in mice. J. Clin. Invest. 120 2395-405 PubMed GONUTS page
  13. Lesbordes-Brion, JC et al. (2006) Targeted disruption of the hepcidin 1 gene results in severe hemochromatosis. Blood 108 1402-5 PubMed GONUTS page
  14. 14.0 14.1 Tselepis, C et al. (2010) Characterization of the transition-metal-binding properties of hepcidin. Biochem. J. 427 289-96 PubMed GONUTS page
  15. Venta, PJ et al. (1985) Structure and exon to protein domain relationships of the mouse carbonic anhydrase II gene. J. Biol. Chem. 260 12130-5 PubMed GONUTS page
  16. Chiga, M et al. (2008) Dietary salt regulates the phosphorylation of OSR1/SPAK kinases and the sodium chloride cotransporter through aldosterone. Kidney Int. 74 1403-9 PubMed GONUTS page
  17. Li, JJ et al. (2012) Hepcidin destabilizes atherosclerotic plaque via overactivating macrophages after erythrophagocytosis. Arterioscler. Thromb. Vasc. Biol. 32 1158-66 PubMed GONUTS page
  18. Yuki, KE et al. (2013) Suppression of hepcidin expression and iron overload mediate Salmonella susceptibility in ankyrin 1 ENU-induced mutant. PLoS ONE 8 e55331 PubMed GONUTS page
  19. Park, CH et al. (2001) Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J. Biol. Chem. 276 7806-10 PubMed GONUTS page
  20. Pigeon, C et al. (2001) A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J. Biol. Chem. 276 7811-9 PubMed GONUTS page
  21. Murphy, AT et al. (2007) Quantitation of hepcidin from human and mouse serum using liquid chromatography tandem mass spectrometry. Blood 110 1048-54 PubMed GONUTS page
  22. Gardenghi, S et al. (2014) Distinct roles for hepcidin and interleukin-6 in the recovery from anemia in mice injected with heat-killed Brucella abortus. Blood 123 1137-45 PubMed GONUTS page
  23. Rausa, M et al. (2015) Bmp6 expression in murine liver non parenchymal cells: a mechanism to control their high iron exporter activity and protect hepatocytes from iron overload? PLoS ONE 10 e0122696 PubMed GONUTS page