GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

ECOLI:CLPX

From GONUTS
Jump to: navigation, search
Species (Taxon ID) Escherichia coli (strain K12). (83333)
Gene Name(s) clpX (ECO:0000255 with HAMAP-Rule:MF_00175) (synonyms: lopC)
Protein Name(s) ATP-dependent Clp protease ATP-binding subunit ClpX (ECO:0000255 with HAMAP-Rule:MF_00175)

ATP-dependent unfoldase ClpX

External Links
UniProt P0A6H1
EMBL L18867
Z23278
U82664
U00096
AP009048
PIR A48709
RefSeq NP_414972.1
YP_488730.1
PDB 1OVX
2DS5
2DS6
2DS7
2DS8
3HTE
3HWS
4I34
4I4L
4I5O
4I63
4I81
4I9K
PDBsum 1OVX
2DS5
2DS6
2DS7
2DS8
3HTE
3HWS
4I34
4I4L
4I5O
4I63
4I81
4I9K
ProteinModelPortal P0A6H1
SMR P0A6H1
DIP DIP-35907N
IntAct P0A6H1
STRING 511145.b0438
PaxDb P0A6H1
PRIDE P0A6H1
EnsemblBacteria AAC73541
BAE76218
GeneID 12931741
945083
KEGG ecj:Y75_p0426
eco:b0438
PATRIC 32116029
EchoBASE EB0157
EcoGene EG10159
eggNOG COG1219
HOGENOM HOG000010093
InParanoid P0A6H1
KO K03544
OMA ILLDIMY
OrthoDB EOG625JZK
PhylomeDB P0A6H1
BioCyc EcoCyc:EG10159-MONOMER
ECOL316407:JW0428-MONOMER
MetaCyc:EG10159-MONOMER
EvolutionaryTrace P0A6H1
PRO PR:P0A6H1
Proteomes UP000000318
UP000000625
Genevestigator P0A6H1
GO GO:0005524
GO:0004176
GO:0042802
GO:0008270
GO:0006200
GO:0051301
GO:0006457
GO:0006508
GO:0016032
Gene3D 3.40.50.300
HAMAP MF_00175
InterPro IPR003593
IPR003959
IPR019489
IPR004487
IPR027417
IPR010603
Pfam PF07724
PF10431
PF06689
SMART SM00382
SM01086
SM00994
SUPFAM SSF52540
TIGRFAMs TIGR00382

Annotations

Qualifier GO ID GO term name Reference ECO ID ECO term name with/from Aspect Extension Notes Status
GO:0004176

ATP-dependent peptidase activity

PMID:8226769[1]

ECO:0000314

F

Figure 7 and 9 show degradation of the lamba O protein by the ClpXP protease, being completely dependent on the presence of ATP, whereas table IV shows results for several nucleotides tested as energy source. The data demonstrated the ATP specificity of this protease.

complete
CACAO 4150

GO:0009408

response to heat

PMID:21317324[2]

ECO:0000315

P

Fig 1A depletion of clpX surpresses temperature-sensitive filamentation in cells causing them to be shorter.

complete
CACAO 4531

GO:0051301

cell division

PMID:21317324[2]

ECO:0000316

UniProtKB:P0A9A6


P

Fig 1

complete
CACAO 6785

GO:0043335

protein unfolding

PMID:21529717[3]

ECO:0000314

P

Figure 4 - ClpX unfolds GFP.

complete
CACAO 9068

GO:0004176

ATP-dependent peptidase activity

PMID:9573050[4]

ECO:0000314

F

Figure 4

complete
CACAO 9069

GO:0016887

ATPase activity

PMID:11278349[5]

ECO:0000314

F

table 2

complete
CACAO 9612

part_of

GO:0009376

HslUV protease complex

PMID:14536075[6]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

enables

GO:0002020

protease binding

PMID:14536075[6]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:P0A6G7

F

Seeded From UniProt

complete

enables

GO:0097718

disordered domain specific binding

PMID:14536075[6]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:P0AFZ3

F

Seeded From UniProt

complete

enables

GO:0005524

ATP binding

PMID:14536075[6]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0016887

ATPase activity

PMID:14536075[6]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0030164

protein denaturation

PMID:14536075[6]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0016887

ATPase activity

PMID:11278349[5]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0004176

ATP-dependent peptidase activity

PMID:9573050[4]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0043335

protein unfolding

PMID:21529717[3]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0051301

cell division

PMID:21317324[2]

ECO:0000316

genetic interaction evidence used in manual assertion

UniProtKB:P0A9A6

P

Seeded From UniProt

complete

involved_in

GO:0051301

cell division

PMID:21317324[2]

ECO:0000316

genetic interaction evidence used in manual assertion

P

Seeded From UniProt

Missing: with/from

enables

GO:0004176

ATP-dependent peptidase activity

PMID:8226769[1]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0051301

cell division

PMID:21873635[7]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

EcoGene:EG10159
PANTHER:PTN000137358
UniProtKB:P9WPB9

P

Seeded From UniProt

complete

involved_in

GO:0030163

protein catabolic process

PMID:21873635[7]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

PANTHER:PTN000137292
UniProtKB:P50866

P

Seeded From UniProt

complete

part_of

GO:0005759

mitochondrial matrix

PMID:21873635[7]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

PANTHER:PTN000137292
SGD:S000000431
TAIR:locus:2154257
UniProtKB:O76031

C

Seeded From UniProt

complete

enables

GO:0005524

ATP binding

PMID:21873635[7]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

EcoGene:EG10159
MGI:MGI:1346017
PANTHER:PTN000137292
SGD:S000000431

F

Seeded From UniProt

complete

enables

GO:0004176

ATP-dependent peptidase activity

PMID:21873635[7]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

EcoGene:EG10159
PANTHER:PTN000137292
UniProtKB:O76031

F

Seeded From UniProt

complete

enables

GO:0042802

identical protein binding

PMID:25866879[8]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:P0A6H1

F

Seeded From UniProt

complete

enables

GO:0042802

identical protein binding

PMID:24561554[9]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:P0A6H1

F

Seeded From UniProt

complete

enables

GO:0042802

identical protein binding

PMID:23622246[10]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:P0A6H1

F

Seeded From UniProt

complete

enables

GO:0042802

identical protein binding

PMID:19914167[11]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:P0A6H1

F

Seeded From UniProt

complete

part_of

GO:0005829

cytosol

PMID:18304323[12]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0005829

cytosol

PMID:15911532[13]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

enables

GO:0005524

ATP binding

PMID:9575205[14]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0006508

proteolysis

GO_REF:0000108

ECO:0000364

evidence based on logical inference from manual annotation used in automatic assertion

GO:0004176

P

Seeded From UniProt

complete

involved_in

GO:0006508

proteolysis

GO_REF:0000108

ECO:0000364

evidence based on logical inference from manual annotation used in automatic assertion

GO:0004176

P

Seeded From UniProt

complete

involved_in

GO:0006508

proteolysis

GO_REF:0000108

ECO:0000364

evidence based on logical inference from manual annotation used in automatic assertion

GO:0004176

P

Seeded From UniProt

complete

enables

GO:0005524

ATP binding

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR003959
InterPro:IPR004487

F

Seeded From UniProt

complete

involved_in

GO:0006457

protein folding

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR004487

P

Seeded From UniProt

complete

enables

GO:0008270

zinc ion binding

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR010603

F

Seeded From UniProt

complete

enables

GO:0046983

protein dimerization activity

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR010603

F

Seeded From UniProt

complete

enables

GO:0051082

unfolded protein binding

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR004487

F

Seeded From UniProt

complete

involved_in

GO:0006457

protein folding

GO_REF:0000104

ECO:0000256

match to sequence model evidence used in automatic assertion

UniRule:UR000001454

P

Seeded From UniProt

complete

enables

GO:0051082

unfolded protein binding

GO_REF:0000104

ECO:0000256

match to sequence model evidence used in automatic assertion

UniRule:UR000001454

F

Seeded From UniProt

complete

enables

GO:0005524

ATP binding

GO_REF:0000104

ECO:0000256

match to sequence model evidence used in automatic assertion

UniRule:UR000001454

F

Seeded From UniProt

complete

enables

GO:0046872

metal ion binding

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0479

F

Seeded From UniProt

complete

enables

GO:0005524

ATP binding

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0067

F

Seeded From UniProt

complete

enables

GO:0000166

nucleotide binding

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0547

F

Seeded From UniProt

complete

involved_in

GO:0016032

viral process

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0945

P

Seeded From UniProt

complete

Notes

References

See Help:References for how to manage references in GONUTS.

  1. 1.0 1.1 Wojtkowiak, D et al. (1993) Isolation and characterization of ClpX, a new ATP-dependent specificity component of the Clp protease of Escherichia coli. J. Biol. Chem. 268 22609-17 PubMed GONUTS page
  2. 2.0 2.1 2.2 2.3 Camberg, JL et al. (2011) The interplay of ClpXP with the cell division machinery in Escherichia coli. J. Bacteriol. 193 1911-8 PubMed GONUTS page
  3. 3.0 3.1 Maillard, RA et al. (2011) ClpX(P) generates mechanical force to unfold and translocate its protein substrates. Cell 145 459-69 PubMed GONUTS page
  4. 4.0 4.1 Gottesman, S et al. (1998) The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev. 12 1338-47 PubMed GONUTS page
  5. 5.0 5.1 Banecki, B et al. (2001) Structure-function analysis of the zinc-binding region of the Clpx molecular chaperone. J. Biol. Chem. 276 18843-8 PubMed GONUTS page
  6. 6.0 6.1 6.2 6.3 6.4 6.5 Wah, DA et al. (2003) Flexible linkers leash the substrate binding domain of SspB to a peptide module that stabilizes delivery complexes with the AAA+ ClpXP protease. Mol. Cell 12 355-63 PubMed GONUTS page
  7. 7.0 7.1 7.2 7.3 7.4 Gaudet, P et al. (2011) Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Brief. Bioinformatics 12 449-62 PubMed GONUTS page
  8. Stinson, BM et al. (2015) Subunit asymmetry and roles of conformational switching in the hexameric AAA+ ring of ClpX. Nat. Struct. Mol. Biol. 22 411-6 PubMed GONUTS page
  9. Rajagopala, SV et al. (2014) The binary protein-protein interaction landscape of Escherichia coli. Nat. Biotechnol. 32 285-90 PubMed GONUTS page
  10. Stinson, BM et al. (2013) Nucleotide binding and conformational switching in the hexameric ring of a AAA+ machine. Cell 153 628-39 PubMed GONUTS page
  11. Glynn, SE et al. (2009) Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine. Cell 139 744-56 PubMed GONUTS page
  12. Ishihama, Y et al. (2008) Protein abundance profiling of the Escherichia coli cytosol. BMC Genomics 9 102 PubMed GONUTS page
  13. Lopez-Campistrous, A et al. (2005) Localization, annotation, and comparison of the Escherichia coli K-12 proteome under two states of growth. Mol. Cell Proteomics 4 1205-9 PubMed GONUTS page
  14. Grimaud, R et al. (1998) Enzymatic and structural similarities between the Escherichia coli ATP-dependent proteases, ClpXP and ClpAP. J. Biol. Chem. 273 12476-81 PubMed GONUTS page