GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

ARATH:SRK2E

From GONUTS
Jump to: navigation, search
Species (Taxon ID) Arabidopsis thaliana (Mouse-ear cress). (3702)
Gene Name(s) SRK2E (synonyms: OST1, SNRK2.6)
Protein Name(s) Serine/threonine-protein kinase SRK2E

Protein OPEN STOMATA 1 SNF1-related kinase 2.6 SnRK2.6 Serine/threonine-protein kinase OST1

External Links
UniProt Q940H6
EMBL AJ316009
AL031032
AL161584
CP002687
AY054624
AY081538
PIR T05223
RefSeq NP_567945.1
UniGene At.2399
PDB 3UC4
3UDB
3UJG
3ZUT
3ZUU
PDBsum 3UC4
3UDB
3UJG
3ZUT
3ZUU
ProteinModelPortal Q940H6
SMR Q940H6
BioGrid 14823
DIP DIP-36705N
IntAct Q940H6
MINT MINT-7260107
PRIDE Q940H6
EnsemblPlants AT4G33950.1
GeneID 829541
KEGG ath:AT4G33950
TAIR AT4G33950
eggNOG COG0515
HOGENOM HOG000233016
InParanoid Q940H6
KO K14498
OMA PADLMND
PhylomeDB Q940H6
BioCyc ARA:AT4G33950-MONOMER
ARA:GQT-701-MONOMER
Proteomes UP000006548
ExpressionAtlas Q940H6
Genevestigator Q940H6
GO GO:0005737
GO:0005829
GO:0005634
GO:0005524
GO:0009931
GO:0016301
GO:0004672
GO:0019903
GO:0009738
GO:0042742
GO:0040007
GO:0048366
GO:0010359
GO:2000377
GO:0010119
GO:1902456
GO:0009737
GO:0006970
GO:0009651
GO:0009414
GO:0010118
GO:0005985
GO:0019432
GO:0006636
InterPro IPR011009
IPR000719
IPR017441
IPR002290
IPR008271
Pfam PF00069
SMART SM00220
SUPFAM SSF56112
PROSITE PS00107
PS50011
PS00108

Annotations

Qualifier GO ID GO term name Reference ECO ID ECO term name with/from Aspect Extension Notes Status

incorrect (CACAO)

GO:0009737

response to abscisic acid stimulus

PMID:18442365[1]

ECO:0000304

P

Disc. Pg.8 .... SnRK2.6 affects ABA-induced stomatal closure

complete

incorrect (CACAO)

GO:0010118

stomatal movement

PMID:18442365[1]

ECO:0000304

P

Disc. Pg.8 .... SnRK2.6 affects ABA-induced stomatal closure

complete

involved_in

GO:0090333

regulation of stomatal closure

PMID:30361234[2]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0071485

cellular response to absence of light

PMID:30361234[2]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0071244

cellular response to carbon dioxide

PMID:30361234[2]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0009737

response to abscisic acid

PMID:30361234[2]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0009789

positive regulation of abscisic acid-activated signaling pathway

PMID:26443375[3]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0005634

nucleus

PMID:26852793[4]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0046777

protein autophosphorylation

PMID:22090030[5]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0019903

protein phosphatase binding

PMID:19955427[6]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:P49598

F

Seeded From UniProt

complete

involved_in

GO:0010359

regulation of anion channel activity

PMID:19955427[6]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:2000377

regulation of reactive oxygen species metabolic process

PMID:15064385[7]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:1902456

regulation of stomatal opening

PMID:23766366[8]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0048366

leaf development

PMID:20200070[9]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0042742

defense response to bacterium

PMID:16959575[10]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0019432

triglyceride biosynthetic process

PMID:20200070[9]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0016301

kinase activity

PMID:15292193[11]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0010119

regulation of stomatal movement

PMID:15064385[7]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

GO:0046777

protein autophosphorylation

PMID:22090030[5]

ECO:0000314

P

MS analysis confirms that certain Ser/Thr residues were phosphorylated in recombinantly expressed SnRK2.6 (Supp. Fig. 1B). This analysis was performed after SnRK2.6 was purified after dephosphorylation by ABI1. The ratios of phosphorylated peptides to unmodified peptides (this data can elucidate the identity of potential phosphorylated residues of interest)were determined based on ion intensities of targeted peptides at different time points. One can see that S175 was the dominant phosphorylation site.

complete
CACAO 5625

involved_in

GO:0010119

regulation of stomatal movement

PMID:12514244[12]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

GO:0004672

protein kinase activity

PMID:22090030[5]

ECO:0000314

F

Figure 1C shows the results of a kinetics experiment that shows that wild type SnRK2.6 phosphorylates ABF2, thus, kinase activity.

complete
CACAO 5953

involved_in

GO:0010119

regulation of stomatal movement

PMID:12047634[13]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0010118

stomatal movement

PMID:16959575[10]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0009931

calcium-dependent protein serine/threonine kinase activity

PMID:12468729[14]

ECO:0000250

sequence similarity evidence used in manual assertion

F

Seeded From UniProt

Missing: with/from

involved_in

GO:0009737

response to abscisic acid

PMID:20200070[9]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0009737

response to abscisic acid

PMID:15064385[7]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0009737

response to abscisic acid

PMID:12514244[12]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0009737

response to abscisic acid

PMID:12047634[13]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0009737

response to abscisic acid

PMID:20733066[15]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0009737

response to abscisic acid

PMID:15292193[11]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0009651

response to salt stress

PMID:15292193[11]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0009414

response to water deprivation

PMID:19880399[16]

ECO:0000316

genetic interaction evidence used in manual assertion

AGI_LocusCode:AT3G50500
AGI_LocusCode:AT5G66880

P

Seeded From UniProt

complete

involved_in

GO:0009414

response to water deprivation

PMID:16682349[17]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0009414

response to water deprivation

PMID:12514244[12]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0009414

response to water deprivation

PMID:12047634[13]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006970

response to osmotic stress

PMID:21220313[18]

ECO:0000316

genetic interaction evidence used in manual assertion

AGI_LocusCode:AT1G10940
AGI_LocusCode:AT1G60940
AGI_LocusCode:AT1G78290
AGI_LocusCode:AT2G23030
AGI_LocusCode:AT3G50500
AGI_LocusCode:AT4G33950
AGI_LocusCode:AT4G40010
AGI_LocusCode:AT5G08590
AGI_LocusCode:AT5G63650
AGI_LocusCode:AT5G66880

P

Seeded From UniProt

complete

involved_in

GO:0006970

response to osmotic stress

PMID:15292193[11]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006636

unsaturated fatty acid biosynthetic process

PMID:20200070[9]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0005985

sucrose metabolic process

PMID:20200070[9]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0005829

cytosol

PMID:18433157[19]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

NOT|part_of

GO:0005829

cytosol

PMID:21166475[20]

ECO:0000245

automatically integrated combinatorial evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0005737

cytoplasm

PMID:19880399[16]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0005634

nucleus

PMID:19880399[16]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

enables

GO:0004672

protein kinase activity

PMID:12468729[14]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0035556

intracellular signal transduction

PMID:21873635[21]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

MGI:MGI:104754
MGI:MGI:2445031
PANTHER:PTN000678822
UniProtKB:P57059
UniProtKB:Q9H0K1
UniProtKB:Q9IA88

P

Seeded From UniProt

complete

involved_in

GO:0006468

protein phosphorylation

PMID:21873635[21]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

FB:FBgn0023169
FB:FBgn0261278
MGI:MGI:104754
MGI:MGI:1202065
MGI:MGI:1336173
MGI:MGI:1347352
MGI:MGI:1351488
MGI:MGI:1923020
MGI:MGI:2445031
MGI:MGI:3037705
PANTHER:PTN000678822
RGD:1359167
RGD:3387
RGD:620545
RGD:620893
RGD:69407
RGD:69653
SGD:S000000931
SGD:S000001531
SGD:S000001584
SGD:S000002529
SGD:S000002885
SGD:S000004086
SGD:S000005127
TAIR:locus:2094672
UniProtKB:O60285
UniProtKB:P57059
UniProtKB:Q13131
UniProtKB:Q6SA08
UniProtKB:Q8IWQ3
UniProtKB:Q8IY84
UniProtKB:Q8TDC3
UniProtKB:Q9BXA6
UniProtKB:Q9BXA7
UniProtKB:Q9H093
UniProtKB:Q9H0K1
UniProtKB:Q9IA88
UniProtKB:Q9NRH2

P

Seeded From UniProt

complete

part_of

GO:0005737

cytoplasm

PMID:21873635[21]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

MGI:MGI:104754
MGI:MGI:106924
MGI:MGI:1347559
MGI:MGI:2145955
MGI:MGI:2445031
PANTHER:PTN000678822
PomBase:SPAC23H4.02
PomBase:SPBC32C12.03c
PomBase:SPCC297.03
PomBase:SPCC74.03c
RGD:3387
RGD:620893
SGD:S000000601
SGD:S000000931
SGD:S000001124
SGD:S000001651
SGD:S000002885
SGD:S000003820
SGD:S000005127
SGD:S000006062
TAIR:locus:2009812
TAIR:locus:2032075
TAIR:locus:2140104
TAIR:locus:2174999
UniProtKB:O14757
UniProtKB:O60285
UniProtKB:P57059
UniProtKB:Q39192
UniProtKB:Q57YE4
UniProtKB:Q8I3C7
UniProtKB:Q8IWQ3
UniProtKB:Q8TDC3
UniProtKB:Q940H6
UniProtKB:Q9IA88
WB:WBGene00002210
WB:WBGene00003919
WB:WBGene00020142
WB:WBGene00021012

C

Seeded From UniProt

complete

part_of

GO:0005634

nucleus

PMID:21873635[21]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

FB:FBgn0023169
FB:FBgn0261278
MGI:MGI:104754
MGI:MGI:1202065
MGI:MGI:1336173
MGI:MGI:2145955
MGI:MGI:2445031
PANTHER:PTN000678822
PomBase:SPAC23H4.02
PomBase:SPBC19C2.05
PomBase:SPCC74.03c
RGD:69407
RGD:69653
SGD:S000001124
SGD:S000002885
SGD:S000003820
SGD:S000005947
TAIR:locus:2009812
TAIR:locus:2032075
TAIR:locus:2140104
TAIR:locus:2159597
TAIR:locus:2160559
TAIR:locus:2174999
UniProtKB:O14757
UniProtKB:O60285
UniProtKB:P43291
UniProtKB:P57059
UniProtKB:Q39192
UniProtKB:Q8TDC3
UniProtKB:Q940H6
WB:WBGene00002210

C

Seeded From UniProt

complete

enables

GO:0004674

protein serine/threonine kinase activity

PMID:21873635[21]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

FB:FBgn0025625
MGI:MGI:104754
MGI:MGI:106924
MGI:MGI:1336173
MGI:MGI:1347559
MGI:MGI:1923020
MGI:MGI:2445031
MGI:MGI:2685946
PANTHER:PTN000678822
PomBase:SPAC57A10.02
PomBase:SPAC644.06c
PomBase:SPBC19C2.05
PomBase:SPBC4F6.06
PomBase:SPCC1020.10
PomBase:SPCC297.03
PomBase:SPCC74.03c
RGD:1359167
RGD:1563268
RGD:1566256
RGD:3387
RGD:620893
RGD:69407
RGD:69653
SGD:S000000931
SGD:S000001531
SGD:S000001584
SGD:S000002529
SGD:S000002885
SGD:S000004086
SGD:S000005127
SGD:S000005759
TAIR:locus:2009812
TAIR:locus:2094672
TAIR:locus:2102132
UniProtKB:O14757
UniProtKB:O60285
UniProtKB:P57059
UniProtKB:Q14680
UniProtKB:Q6SA08
UniProtKB:Q8IWQ3
UniProtKB:Q8IY84
UniProtKB:Q8TDC3
UniProtKB:Q96PF2
UniProtKB:Q9BXA6
UniProtKB:Q9BXA7
UniProtKB:Q9H093
UniProtKB:Q9H0K1
UniProtKB:Q9IA88
UniProtKB:Q9NRH2
UniProtKB:Q9STV4
WB:WBGene00003919

F

Seeded From UniProt

complete

enables

GO:0042802

identical protein binding

PMID:22908257[22]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:Q940H6

F

Seeded From UniProt

complete

enables

GO:0042802

identical protein binding

PMID:19955427[6]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:Q940H6

F

Seeded From UniProt

complete

enables

GO:0004672

protein kinase activity

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR000719
InterPro:IPR008271

F

Seeded From UniProt

complete

enables

GO:0005524

ATP binding

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR000719
InterPro:IPR017441

F

Seeded From UniProt

complete

involved_in

GO:0006468

protein phosphorylation

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR000719
InterPro:IPR008271

P

Seeded From UniProt

complete

involved_in

GO:0009738

abscisic acid-activated signaling pathway

PMID:12514244[12]

ECO:0000304

author statement supported by traceable reference used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0004672

protein kinase activity

PMID:12514244[12]

ECO:0000304

author statement supported by traceable reference used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0000166

nucleotide binding

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0547

F

Seeded From UniProt

complete

enables

GO:0005524

ATP binding

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0067

F

Seeded From UniProt

complete

part_of

GO:0005634

nucleus

GO_REF:0000037
GO_REF:0000039

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0539
UniProtKB-SubCell:SL-0191

C

Seeded From UniProt

complete

involved_in

GO:0009738

abscisic acid-activated signaling pathway

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0938

P

Seeded From UniProt

complete

involved_in

GO:0016310

phosphorylation

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0418

P

Seeded From UniProt

complete

enables

GO:0016301

kinase activity

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0418

F

Seeded From UniProt

complete

enables

GO:0004674

protein serine/threonine kinase activity

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0723

F

Seeded From UniProt

complete

involved_in

GO:0006952

defense response

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0611

P

Seeded From UniProt

complete

enables

GO:0016740

transferase activity

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0808

F

Seeded From UniProt

complete

Notes

References

See Help:References for how to manage references in GONUTS.

  1. 1.0 1.1 Diédhiou, CJ et al. (2008) The SNF1-type serine-threonine protein kinase SAPK4 regulates stress-responsive gene expression in rice. BMC Plant Biol. 8 49 PubMed GONUTS page
  2. 2.0 2.1 2.2 2.3 Sierla, M et al. (2018) The Receptor-like Pseudokinase GHR1 Is Required for Stomatal Closure. Plant Cell 30 2813-2837 PubMed GONUTS page
  3. Mitula, F et al. (2015) Arabidopsis ABA-Activated Kinase MAPKKK18 is Regulated by Protein Phosphatase 2C ABI1 and the Ubiquitin-Proteasome Pathway. Plant Cell Physiol. 56 2351-67 PubMed GONUTS page
  4. Tajdel, M et al. (2016) Regulation of Arabidopsis MAPKKK18 by ABI1 and SnRK2, components of the ABA signaling pathway. Plant Signal Behav 11 e1139277 PubMed GONUTS page
  5. 5.0 5.1 5.2 Xie, T et al. (2012) Molecular mechanism for inhibition of a critical component in the Arabidopsis thaliana abscisic acid signal transduction pathways, SnRK2.6, by protein phosphatase ABI1. J. Biol. Chem. 287 794-802 PubMed GONUTS page
  6. 6.0 6.1 6.2 Lee, SC et al. (2009) A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proc. Natl. Acad. Sci. U.S.A. 106 21419-24 PubMed GONUTS page
  7. 7.0 7.1 7.2 Suhita, D et al. (2004) Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure. Plant Physiol. 134 1536-45 PubMed GONUTS page
  8. Laanemets, K et al. (2013) Calcium-dependent and -independent stomatal signaling network and compensatory feedback control of stomatal opening via Ca2+ sensitivity priming. Plant Physiol. 163 504-13 PubMed GONUTS page
  9. 9.0 9.1 9.2 9.3 9.4 Zheng, Z et al. (2010) The protein kinase SnRK2.6 mediates the regulation of sucrose metabolism and plant growth in Arabidopsis. Plant Physiol. 153 99-113 PubMed GONUTS page
  10. 10.0 10.1 Melotto, M et al. (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126 969-80 PubMed GONUTS page
  11. 11.0 11.1 11.2 11.3 Boudsocq, M et al. (2004) Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. J. Biol. Chem. 279 41758-66 PubMed GONUTS page
  12. 12.0 12.1 12.2 12.3 12.4 Yoshida, R et al. (2002) ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant Cell Physiol. 43 1473-83 PubMed GONUTS page
  13. 13.0 13.1 13.2 Merlot, S et al. (2002) Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation. Plant J. 30 601-9 PubMed GONUTS page
  14. 14.0 14.1 Mustilli, AC et al. (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14 3089-99 PubMed GONUTS page
  15. Kline, KG et al. (2010) In planta changes in protein phosphorylation induced by the plant hormone abscisic acid. Proc. Natl. Acad. Sci. U.S.A. 107 15986-91 PubMed GONUTS page
  16. 16.0 16.1 16.2 Fujita, Y et al. (2009) Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol. 50 2123-32 PubMed GONUTS page
  17. Xie, X et al. (2006) The identification of genes involved in the stomatal response to reduced atmospheric relative humidity. Curr. Biol. 16 882-7 PubMed GONUTS page
  18. Fujii, H et al. (2011) Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo. Proc. Natl. Acad. Sci. U.S.A. 108 1717-22 PubMed GONUTS page
  19. de la Fuente van Bentem, S et al. (2008) Site-specific phosphorylation profiling of Arabidopsis proteins by mass spectrometry and peptide chip analysis. J. Proteome Res. 7 2458-70 PubMed GONUTS page
  20. Ito, J et al. (2011) Analysis of the Arabidopsis cytosolic proteome highlights subcellular partitioning of central plant metabolism. J. Proteome Res. 10 1571-82 PubMed GONUTS page
  21. 21.0 21.1 21.2 21.3 21.4 Gaudet, P et al. (2011) Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Brief. Bioinformatics 12 449-62 PubMed GONUTS page
  22. Yu, F et al. (2012) FERONIA receptor kinase pathway suppresses abscisic acid signaling in Arabidopsis by activating ABI2 phosphatase. Proc. Natl. Acad. Sci. U.S.A. 109 14693-8 PubMed GONUTS page