GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

ARATH:Q94CE5

From GONUTS
Jump to: navigation, search
Species (Taxon ID) Arabidopsis thaliana (Mouse-ear cress). (3702)
Gene Name(s) POP2 (synonyms: GABA-T, HER1)
Protein Name(s) Gamma-aminobutyrate transaminase POP2, mitochondrial

AtGABA-T Protein HEXENAL RESPONSE 1 Protein POLLEN-PISTIL INCOMPATIBILITY 2 AtPOP2

External Links
UniProt Q94CE5
EMBL AF351125
AY034923
AY142571
AP001306
CP002686
CP002686
AK317625
RefSeq NP_001189947.1
NP_566700.1
UniGene At.22661
At.48693
ProteinModelPortal Q94CE5
SMR Q94CE5
STRING 3702.AT3G22200.1-P
PRIDE Q94CE5
EnsemblPlants AT3G22200.1
GeneID 821784
KEGG ath:AT3G22200
TAIR AT3G22200
eggNOG COG0161
HOGENOM HOG000020207
KO K16871
OMA VWSYAHP
PhylomeDB Q94CE5
BioCyc ARA:GQT-659-MONOMER
MetaCyc:AT3G22200-LER-MONOMER
Proteomes UP000006548
Genevestigator Q94CE5
GO GO:0005739
GO:0030170
GO:0008483
Gene3D 3.40.640.10
3.90.1150.10
InterPro IPR005814
IPR015424
IPR015421
IPR015422
PANTHER PTHR11986
Pfam PF00202
PIRSF PIRSF000521
SUPFAM SSF53383
PROSITE PS00600

Annotations

Qualifier GO ID GO term name Reference ECO ID ECO term name with/from Aspect Extension Notes Status

involved_in

GO:0048366

leaf development

PMID:21690177[1]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0009943

adaxial/abaxial axis specification

PMID:21690177[1]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0003867

4-aminobutyrate transaminase activity

PMID:12859897[2]

ECO:0000315

mutant phenotype evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0050897

cobalt ion binding

PMID:20018591[3]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0048367

shoot system development

PMID:17971036[4]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0048364

root development

PMID:23148892[5]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0046686

response to cadmium ion

PMID:16502469[6]

ECO:0000270

expression pattern evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0019484

beta-alanine catabolic process

PMID:12859897[2]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0010183

pollen tube guidance

PMID:12859897[2]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0010154

fruit development

PMID:17971036[4]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0010033

response to organic substance

PMID:17971036[4]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0009865

pollen tube adhesion

PMID:8929415[7]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0009860

pollen tube growth

PMID:12859897[2]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0009651

response to salt stress

PMID:23148892[5]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0009450

gamma-aminobutyric acid catabolic process

PMID:12859897[2]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0009448

gamma-aminobutyric acid metabolic process

PMID:23148892[5]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0008270

zinc ion binding

PMID:20018591[3]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0006979

response to oxidative stress

PMID:12492832[8]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006541

glutamine metabolic process

PMID:23148892[5]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006540

glutamate decarboxylation to succinate

PMID:12859897[2]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006536

glutamate metabolic process

PMID:23148892[5]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006105

succinate metabolic process

PMID:23148892[5]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006020

inositol metabolic process

PMID:23148892[5]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0005985

sucrose metabolic process

PMID:23148892[5]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

NOT|part_of

GO:0005829

cytosol

PMID:21166475[9]

ECO:0000245

automatically integrated combinatorial evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0005794

Golgi apparatus

PMID:22430844[10]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0005774

vacuolar membrane

PMID:17151019[11]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0005739

mitochondrion

PMID:22923678[12]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0005739

mitochondrion

PMID:14671022[13]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0005739

mitochondrion

PMID:12492832[8]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0009448

gamma-aminobutyric acid metabolic process

PMID:21873635[14]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

PANTHER:PTN002448348
TAIR:locus:2090414
UniProtKB:Q84P53
UniProtKB:Q84P54

P

Seeded From UniProt

complete

involved_in

GO:0009102

biotin biosynthetic process

PMID:21873635[14]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

EcoGene:EG10117
PANTHER:PTN000241343
SGD:S000005341
TAIR:locus:2174532
UniProtKB:P9WQ81
UniProtKB:Q4WD65
UniProtKB:Q5AYI6

P

Seeded From UniProt

complete

enables

GO:0004015

adenosylmethionine-8-amino-7-oxononanoate transaminase activity

PMID:21873635[14]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

EcoGene:EG10117
PANTHER:PTN000241343
SGD:S000005341
TAIR:locus:2174532
UniProtKB:P9WQ81

F

Seeded From UniProt

complete

enables

GO:0003867

4-aminobutyrate transaminase activity

PMID:21873635[14]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

PANTHER:PTN002448348
TAIR:locus:2090414
UniProtKB:Q84P53
UniProtKB:Q84P54

F

Seeded From UniProt

complete

enables

GO:0003824

catalytic activity

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR015421
InterPro:IPR015422

F

Seeded From UniProt

complete

enables

GO:0008483

transaminase activity

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR005814

F

Seeded From UniProt

complete

enables

GO:0030170

pyridoxal phosphate binding

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR005814

F

Seeded From UniProt

complete

enables

GO:0102351

gamma-aminobutyrate transaminase (glyoxylate dependent) activity

GO_REF:0000003

ECO:0000501

evidence used in automatic assertion

EC:2.6.1.96

F

Seeded From UniProt

complete

enables

GO:0034387

4-aminobutyrate:pyruvate transaminase activity

GO_REF:0000003

ECO:0000501

evidence used in automatic assertion

EC:2.6.1.96

F

Seeded From UniProt

complete

part_of

GO:0005739

mitochondrion

GO_REF:0000037
GO_REF:0000039

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0496
UniProtKB-SubCell:SL-0173

C

Seeded From UniProt

complete

enables

GO:0008483

transaminase activity

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0032

F

Seeded From UniProt

complete

enables

GO:0016740

transferase activity

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0808

F

Seeded From UniProt

complete

Notes

References

See Help:References for how to manage references in GONUTS.

  1. 1.0 1.1 Toyokura, K et al. (2011) Succinic semialdehyde dehydrogenase is involved in the robust patterning of Arabidopsis leaves along the adaxial-abaxial axis. Plant Cell Physiol. 52 1340-53 PubMed GONUTS page
  2. 2.0 2.1 2.2 2.3 2.4 2.5 Palanivelu, R et al. (2003) Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels. Cell 114 47-59 PubMed GONUTS page
  3. 3.0 3.1 Tan, YF et al. (2010) Divalent metal ions in plant mitochondria and their role in interactions with proteins and oxidative stress-induced damage to respiratory function. Plant Physiol. 152 747-61 PubMed GONUTS page
  4. 4.0 4.1 4.2 Mirabella, R et al. (2008) The Arabidopsis her1 mutant implicates GABA in E-2-hexenal responsiveness. Plant J. 53 197-213 PubMed GONUTS page
  5. 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Renault, H et al. (2013) γ-Aminobutyric acid transaminase deficiency impairs central carbon metabolism and leads to cell wall defects during salt stress in Arabidopsis roots. Plant Cell Environ. 36 1009-18 PubMed GONUTS page
  6. Sarry, JE et al. (2006) The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics 6 2180-98 PubMed GONUTS page
  7. Wilhelmi, LK & Preuss, D (1996) Self-sterility in Arabidopsis due to defective pollen tube guidance. Science 274 1535-7 PubMed GONUTS page
  8. 8.0 8.1 Sweetlove, LJ et al. (2002) The impact of oxidative stress on Arabidopsis mitochondria. Plant J. 32 891-904 PubMed GONUTS page
  9. Ito, J et al. (2011) Analysis of the Arabidopsis cytosolic proteome highlights subcellular partitioning of central plant metabolism. J. Proteome Res. 10 1571-82 PubMed GONUTS page
  10. Parsons, HT et al. (2012) Isolation and proteomic characterization of the Arabidopsis Golgi defines functional and novel components involved in plant cell wall biosynthesis. Plant Physiol. 159 12-26 PubMed GONUTS page
  11. Jaquinod, M et al. (2007) A proteomics dissection of Arabidopsis thaliana vacuoles isolated from cell culture. Mol. Cell Proteomics 6 394-412 PubMed GONUTS page
  12. Nikolovski, N et al. (2012) Putative glycosyltransferases and other plant Golgi apparatus proteins are revealed by LOPIT proteomics. Plant Physiol. 160 1037-51 PubMed GONUTS page
  13. Heazlewood, JL et al. (2004) Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins. Plant Cell 16 241-56 PubMed GONUTS page
  14. 14.0 14.1 14.2 14.3 Gaudet, P et al. (2011) Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Brief. Bioinformatics 12 449-62 PubMed GONUTS page