GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

ARATH:MOCOS

From GONUTS
Jump to: navigation, search
Species (Taxon ID) Arabidopsis thaliana (Mouse-ear cress). (3702)
Gene Name(s) ABA3 (synonyms: LOS5)
Protein Name(s) Molybdenum cofactor sulfurase (ECO:0000255 with HAMAP-Rule:MF_03050)

MCS (ECO:0000255 with HAMAP-Rule:MF_03050) MOS (ECO:0000255 with HAMAP-Rule:MF_03050) MoCo sulfurase (ECO:0000255 with HAMAP-Rule:MF_03050) Abscisic acid protein 3 Low expression of osmotically expressive genes protein 5 Molybdenum cofactor sulfurtransferase (ECO:0000255 with HAMAP-Rule:MF_03050)

External Links
UniProt Q9C5X8
EMBL AF325457
AY034895
AC011808
CP002684
PIR G86300
RefSeq NP_564001.1
UniGene At.18927
ProteinModelPortal Q9C5X8
STRING 3702.AT1G16540.1-P
PaxDb Q9C5X8
PRIDE Q9C5X8
EnsemblPlants AT1G16540.1
GeneID 838224
KEGG ath:AT1G16540
TAIR AT1G16540
eggNOG COG3217
HOGENOM HOG000029698
InParanoid Q9C5X8
KO K15631
OMA CQRCQMV
PhylomeDB Q9C5X8
Reactome REACT_187830
PRO PR:Q9C5X8
Proteomes UP000006548
Genevestigator Q9C5X8
GO GO:0005622
GO:0008265
GO:0030151
GO:0030170
GO:0009000
GO:0016740
GO:0009688
GO:0009734
GO:0042742
GO:0006777
GO:0018315
GO:0045037
GO:0009409
GO:0009408
GO:0006970
GO:0009651
GO:0010118
GO:0010182
Gene3D 3.40.640.10
3.90.1150.10
HAMAP MF_03050
InterPro IPR000192
IPR005302
IPR028886
IPR005303
IPR015424
IPR015421
IPR015422
IPR011037
Pfam PF00266
PF03473
PF03476
SUPFAM SSF50800
SSF53383
PROSITE PS51340

Annotations

Qualifier GO ID GO term name Reference ECO ID ECO term name with/from Aspect Extension Notes Status
GO:0009688

abscisic acid biosynthetic process

PMID:22412184[1]

ECO:0000314

P

figure 3 shows that Z35 (non transgenic plants) had higher levels of water loss over time compared to L5 and L8 plants (both transgenic plants) meaning that the transgenic plants has increased ABA production which lead to better drought tolerance and less water loss.

complete
CACAO 4733

involved_in

GO:0045037

protein import into chloroplast stroma

PMID:20374530[2]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0042742

defense response to bacterium

PMID:16959575[3]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0018315

molybdenum incorporation into molybdenum-molybdopterin complex

PMID:11553608[4]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0010118

stomatal movement

PMID:16959575[3]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0009734

auxin-activated signaling pathway

PMID:15710899[5]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0009688

abscisic acid biosynthetic process

PMID:8893542[6]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0009651

response to salt stress

PMID:11549764[7]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0009409

response to cold

PMID:11549764[7]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0009408

response to heat

PMID:15923322[8]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0009000

selenocysteine lyase activity

PMID:15561708[9]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0008265

Mo-molybdopterin cofactor sulfurase activity

PMID:11553608[4]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0006970

response to osmotic stress

PMID:11549764[7]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0005623

cell

GO_REF:0000108

ECO:0000364

evidence based on logical inference from manual annotation used in automatic assertion

GO:0045037

C

Seeded From UniProt

complete

enables

GO:0003824

catalytic activity

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR005302
InterPro:IPR015421
InterPro:IPR015422

F

Seeded From UniProt

complete

involved_in

GO:0006777

Mo-molybdopterin cofactor biosynthetic process

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR028886

P

Seeded From UniProt

complete

enables

GO:0008265

Mo-molybdopterin cofactor sulfurase activity

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR028886

F

Seeded From UniProt

complete

enables

GO:0030151

molybdenum ion binding

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR005302

F

Seeded From UniProt

complete

enables

GO:0030170

pyridoxal phosphate binding

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR005302

F

Seeded From UniProt

complete

enables

GO:0102867

molybdenum cofactor sulfurtransferase activity

GO_REF:0000003

ECO:0000501

evidence used in automatic assertion

EC:2.8.1.9

F

Seeded From UniProt

complete

enables

GO:0008265

Mo-molybdopterin cofactor sulfurase activity

GO_REF:0000003

ECO:0000501

evidence used in automatic assertion

EC:2.8.1.9

F

Seeded From UniProt

complete

enables

GO:0016829

lyase activity

GO_REF:0000104

ECO:0000256

match to sequence model evidence used in automatic assertion

UniRule:UR000160889

F

Seeded From UniProt

complete

involved_in

GO:0006777

Mo-molybdopterin cofactor biosynthetic process

GO_REF:0000104

ECO:0000256

match to sequence model evidence used in automatic assertion

UniRule:UR000160889

P

Seeded From UniProt

complete

enables

GO:0030151

molybdenum ion binding

GO_REF:0000104

ECO:0000256

match to sequence model evidence used in automatic assertion

UniRule:UR000160889

F

Seeded From UniProt

complete

enables

GO:0008265

Mo-molybdopterin cofactor sulfurase activity

GO_REF:0000104

ECO:0000256

match to sequence model evidence used in automatic assertion

UniRule:UR000160889

F

Seeded From UniProt

complete

enables

GO:0030170

pyridoxal phosphate binding

GO_REF:0000104

ECO:0000256

match to sequence model evidence used in automatic assertion

UniRule:UR000160889

F

Seeded From UniProt

complete

involved_in

GO:0010182

sugar mediated signaling pathway

PMID:12663220[10]

ECO:0000304

author statement supported by traceable reference used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006777

Mo-molybdopterin cofactor biosynthetic process

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0501

P

Seeded From UniProt

complete

enables

GO:0016740

transferase activity

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0808

F

Seeded From UniProt

complete

Notes

References

See Help:References for how to manage references in GONUTS.

  1. Yue, Y et al. (2012) Overexpression of the AtLOS5 gene increased abscisic acid level and drought tolerance in transgenic cotton. J. Exp. Bot. 63 3741-8 PubMed GONUTS page
  2. Zhong, R et al. (2010) A forward genetic screen to explore chloroplast protein import in vivo identifies Moco sulfurase, pivotal for ABA and IAA biosynthesis and purine turnover. Plant J. 63 44-59 PubMed GONUTS page
  3. 3.0 3.1 Melotto, M et al. (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126 969-80 PubMed GONUTS page
  4. 4.0 4.1 Bittner, F et al. (2001) ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana. J. Biol. Chem. 276 40381-4 PubMed GONUTS page
  5. Dai, X et al. (2005) Genetic and chemical analyses of the action mechanisms of sirtinol in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 102 3129-34 PubMed GONUTS page
  6. Léon-Kloosterziel, KM et al. (1996) Isolation and characterization of abscisic acid-deficient Arabidopsis mutants at two new loci. Plant J. 10 655-61 PubMed GONUTS page
  7. 7.0 7.1 7.2 Xiong, L et al. (2001) The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell 13 2063-83 PubMed GONUTS page
  8. Larkindale, J et al. (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol. 138 882-97 PubMed GONUTS page
  9. Heidenreich, T et al. (2005) Characterization of the NifS-like domain of ABA3 from Arabidopsis thaliana provides insight into the mechanism of molybdenum cofactor sulfuration. J. Biol. Chem. 280 4213-8 PubMed GONUTS page
  10. León, P & Sheen, J (2003) Sugar and hormone connections. Trends Plant Sci. 8 110-6 PubMed GONUTS page