GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

PMID:9774353

From GONUTS
Jump to: navigation, search
Citation

Bravo, A and Salas, M (1998) Polymerization of bacteriophage phi 29 replication protein p1 into protofilament sheets. EMBO J. 17:6096-105

Abstract

Protein p1 (85 amino acids) of the Bacillus subtilis phage phi29 is a membrane-associated protein required for in vivo viral DNA replication. In the present study, we have constructed two fusion proteins, maltose-binding protein (MalE)-p1 and MalE-p1DeltaN33. By using both sedimentation assays and negative-stain electron microscopy analysis, we demonstrated that MalE-p1 molecules self-associated into long filamentous structures, which did not assemble further into larger arrays. These structures were constituted by a core of protein p1 surrounded by MalE subunits. After removal of the MalE component by cleavage with protease factor Xa, the resulting protein p1 filaments tended to associate, forming bundles. The MalE-p1DeltaN33 fusion protein, however, did not self-interact in solution. Nevertheless, after being separated from the MalE domain by factor Xa digestion, protein p1DeltaN33 assembled into long protofilaments that associated in a highly ordered, parallel array forming large two-dimensional sheets. These structures resemble eukaryotic tubulin and bacterial FtsZ polymers. In addition, we show that protein p1 influences the rate of in vivo phi29 DNA synthesis in a temperature-dependent manner. We propose that protein p1 is a component of a viral-encoded structure that associates with the bacterial membrane. This structure would provide an anchoring site for the viral DNA replication machinery.

Links

PubMed PMC1170936 Online version:10.1093/emboj/17.20.6096

Keywords

Amino Acid Sequence; Bacillus Phages/chemistry; Bacillus Phages/genetics; Bacillus Phages/physiology; Bacillus subtilis/virology; Carrier Proteins/genetics; DNA Replication; DNA, Viral/biosynthesis; Maltose-Binding Proteins; Molecular Sequence Data; Polymers/metabolism; Protein Structure, Secondary; Recombinant Fusion Proteins/genetics; Viral Proteins/genetics; Viral Proteins/metabolism; Viral Proteins/ultrastructure; Virus Assembly

Significance

Annotations

Gene product Qualifier GO Term Evidence Code with/from Aspect Extension Notes Status

Notes

See also

References

See Help:References for how to manage references in GONUTS.