GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.
PMID:7527626
Citation |
Danganan, CE, Ye, RW, Daubaras, DL, Xun, L and Chakrabarty, AM (1994) Nucleotide sequence and functional analysis of the genes encoding 2,4,5-trichlorophenoxyacetic acid oxygenase in Pseudomonas cepacia AC1100. Appl. Environ. Microbiol. 60:4100-6 |
---|---|
Abstract |
Pseudomonas cepacia AC1100 is able to use the chlorinated aromatic compound 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) as the sole source of carbon and energy. One of the early steps in this pathway is the conversion of 2,4,5-T to 2,4,5-trichlorophenol (2,4,5-TCP). 2,4,5-TCP accumulates in the culture medium when AC1100 is grown in the presence of 2,4,5-T. A DNA region from the AC1100 genome has been subcloned as a 2.7-kb SstI-XbaI DNA fragment, which on transfer to Pseudomonas aeruginosa PAO1 allows the conversion of 2,4,5-T to 2,4,5-TCP. We have determined the directions of transcription of these genes as well as the complete nucleotide sequences of the genes and the number and sizes of the polypeptides synthesized by pulse-labeling experiments. This 2.7-kb DNA fragment encodes two polypeptides with calculated molecular masses of 51 and 18 kDa. Proteins of similar sizes were seen in the T7 pulse-labeling experiment in Escherichia coli. We have designated the genes for these proteins tftA1 (which encodes the 51-kDa protein) and tftA2 (which encodes the 18-kDa protein). TftA1 and TftA2 have strong amino acid sequence homology to BenA and BenB from the benzoate 1,2-dioxygenase system of Acinetobacter calcoaceticus, as well as to XylX and XylY from the toluate 1,2-dioxygenase system of Pseudomonas putida. The Pseudomonas aeruginosa PAO1 strain containing the 2.7-kb SstI-XbaI fragment was able to convert not only 2,4,5-T to 2,4,5-TCP but also 2,4-dichlorophenoxyacetic acid to 2,4-dichlorophenol and phenoxyacetate to phenol. |
Links | |
Keywords |
Amino Acid Sequence; Base Sequence; Burkholderia cepacia/enzymology; Burkholderia cepacia/genetics; Cloning, Molecular; Escherichia coli/genetics; Gene Expression Regulation, Enzymologic; Genes, Bacterial/genetics; Molecular Sequence Data; Oxygenases/biosynthesis; Oxygenases/genetics; Pseudomonas aeruginosa/genetics; Sequence Homology, Amino Acid |
edit table |
Significance
Annotations
Gene product | Qualifier | GO Term | Evidence Code | with/from | Aspect | Extension | Notes | Status |
---|---|---|---|---|---|---|---|---|
See also
References
See Help:References for how to manage references in GONUTS.