GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

PMID:1821856

From GONUTS
Jump to: navigation, search
Citation

Robinson, SD, Silberstein, GB, Roberts, AB, Flanders, KC and Daniel, CW (1991) Regulated expression and growth inhibitory effects of transforming growth factor-beta isoforms in mouse mammary gland development. Development 113:867-78

Abstract

Transforming Growth Factor-beta 1 (TGF-beta 1) was previously shown to inhibit reversibly the growth of mouse mammary ducts when administered in vivo by miniature slow-release plastic implants. We now report a comparative analysis of three TGF-beta isoforms with respect to gene expression and localization of protein products within the mouse mammary gland. Our studies revealed overlapping expression patterns of TGF-beta 1, TGF-beta 2 and TGF-beta 3 within the epithelium of the actively-growing mammary end buds during branching morphogenesis, as well as within the epithelium of growth-quiescent ducts. However, TGF-beta 3 was the only isoform detected in myoepithelial progenitor cells (cap cells) of the growing end buds and myoepithelial cells of the mature ducts. During pregnancy, TGF-beta 2 and TGF-beta 3 transcripts increased to high levels, in contrast to TGF-beta 1 transcripts which were moderately abundant; TGF-beta 2 was significantly transcribed only during pregnancy. Molecular hybridization in situ revealed overlapping patterns of expression for the three TGF-beta isoforms during alveolar morphogenesis, but showed that, in contrast to the patterns of TGF-beta 1 and TGF-beta 2 expression, TGF-beta 3 is expressed more heavily in ducts than in alveoli during pregnancy. Developing alveolar tissue and its associated ducts displayed striking TGF-beta 3 immunoreactivity which was greatly reduced during lactation. All three isoforms showed dramatically reduced expression in lactating tissue. The biological effects of active, exogenous TGF-beta 2 and TGF-beta 3 were tested with slow-release plastic implants. These isoforms, like TGF-beta 1, inhibited mammary ductal elongation in situ by causing the disappearance of the proliferating stem cell layer (cap cells) and rapid involution of ductal end buds. None of the isoforms were active in inhibiting alveolar morphogenesis. We conclude that under the limited conditions of these tests, the three mammalian isoforms are functionally equivalent. However, striking differences in patterns of gene expression and in the distribution of immunoreactive peptides suggest that TGF-beta isoforms may have distinct roles in mammary growth regulation, morphogenesis and functional differentiation.

Links

PubMed

Keywords

Animals; Autoradiography; Blotting, Northern; Female; Gene Expression/physiology; Mammary Glands, Animal/chemistry; Mammary Glands, Animal/growth & development; Mammary Glands, Animal/ultrastructure; Mice; Mice, Inbred Strains; Microscopy, Immunoelectron; Morphogenesis/physiology; RNA, Messenger/analysis; Transforming Growth Factor beta/genetics; Transforming Growth Factor beta/physiology

Significance

Annotations

Gene product Qualifier GO ID GO term name Evidence Code with/from Aspect Notes Status


See also

References

See Help:References for how to manage references in GONUTS.