GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

PMID:17329413

From GONUTS
Jump to: navigation, search
Citation

Schwander, M, Sczaniecka, A, Grillet, N, Bailey, JS, Avenarius, M, Najmabadi, H, Steffy, BM, Federe, GC, Lagler, EA, Banan, R, Hice, R, Grabowski-Boase, L, Keithley, EM, Ryan, AF, Housley, GD, Wiltshire, T, Smith, RJ, Tarantino, LM and Müller, U (2007) A forward genetics screen in mice identifies recessive deafness traits and reveals that pejvakin is essential for outer hair cell function. J. Neurosci. 27:2163-75

Abstract

Deafness is the most common form of sensory impairment in the human population and is frequently caused by recessive mutations. To obtain animal models for recessive forms of deafness and to identify genes that control the development and function of the auditory sense organs, we performed a forward genetics screen in mice. We identified 13 mouse lines with defects in auditory function and six lines with auditory and vestibular defects. We mapped several of the affected genetic loci and identified point mutations in four genes. Interestingly, all identified genes are expressed in mechanosensory hair cells and required for their function. One mutation maps to the pejvakin gene, which encodes a new member of the gasdermin protein family. Previous studies have described two missense mutations in the human pejvakin gene that cause nonsyndromic recessive deafness (DFNB59) by affecting the function of auditory neurons. In contrast, the pejvakin allele described here introduces a premature stop codon, causes outer hair cell defects, and leads to progressive hearing loss. We also identified a novel allele of the human pejvakin gene in an Iranian pedigree that is afflicted with progressive hearing loss. Our findings suggest that the mechanisms of pathogenesis associated with pejvakin mutations are more diverse than previously appreciated. More generally, our findings demonstrate that recessive screens in mice are powerful tools for identifying genes that control the development and function of mechanosensory hair cells and cause deafness in humans, as well as generating animal models for disease.

Links

PubMed Online version:10.1523/JNEUROSCI.4975-06.2007

Keywords

Animals; Base Sequence; Chromosome Mapping; Deafness/chemically induced; Deafness/genetics; Disease Models, Animal; Ethylnitrosourea/analogs & derivatives; Female; Genes, Recessive; Genetic Testing; Hair Cells, Auditory, Outer/cytology; Hair Cells, Auditory, Outer/pathology; Hair Cells, Auditory, Outer/physiology; Humans; Male; Membrane Proteins/genetics; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Mutagens; Neoplasm Proteins/metabolism; Pedigree; Point Mutation; Psychomotor Agitation/genetics; Sequence Alignment

Significance

Annotations

Gene product Qualifier GO ID GO term name Evidence Code with/from Aspect Notes Status


See also

References

See Help:References for how to manage references in GONUTS.