GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

PMID:17210579

From GONUTS
Jump to: navigation, search
Citation

Takeda, K, Shimozono, R, Noguchi, T, Umeda, T, Morimoto, Y, Naguro, I, Tobiume, K, Saitoh, M, Matsuzawa, A and Ichijo, H (2007) Apoptosis signal-regulating kinase (ASK) 2 functions as a mitogen-activated protein kinase kinase kinase in a heteromeric complex with ASK1. J. Biol. Chem. 282:7522-31

Abstract

Apoptosis signal-regulating kinase (ASK) 1 is a mitogen-activated protein kinase kinase kinase (MAP3K) in the c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase pathways that play multiple important roles in cytokine and stress responses. Here we show that ASK2, a highly related serine/threonine kinase to ASK1, also functions as a MAP3K only in a heteromeric complex with ASK1. We found that endogenous ASK2 was constitutively degraded in ASK1-deficient cells, suggesting that ASK1 is required for the stability of ASK2. ASK2 in a heteromeric complex with a kinase-negative mutant of ASK1 (ASK1-KN) effectively activated MAP2K and was more competent to respond to oxidative stress than ASK2 alone. Knockdown of ASK2 revealed that ASK2 was required for oxidative stress-induced JNK activation. These results suggest that ASK2 forms a functional MAP3K complex with ASK1, in which ASK1 supports the stability and the active configuration of ASK2. Moreover, ASK2 was found to activate ASK1 by direct phosphorylation, suggesting that ASK1 and ASK2 in a heteromeric complex facilitate their activities to each other by distinct mechanisms. Such a formation of functional heteromeric complex between different MAP3Ks may be advantageous for cells to cope with a wide variety of stimuli by fine regulation of cellular responses.

Links

PubMed Online version:10.1074/jbc.M607177200

Keywords

Amino Acid Sequence; Animals; Carrier Proteins/analysis; Cells, Cultured; Humans; MAP Kinase Kinase Kinase 5/chemistry; MAP Kinase Kinase Kinase 5/metabolism; MAP Kinase Kinase Kinases/chemistry; MAP Kinase Kinase Kinases/physiology; Mice; Molecular Sequence Data; Oxidative Stress; Phosphorylation

Significance

Annotations

Gene product Qualifier GO ID GO term name Evidence Code with/from Aspect Notes Status


See also

References

See Help:References for how to manage references in GONUTS.