GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

PMID:16618929

From GONUTS
Jump to: navigation, search
Citation

Dunkley, TP, Hester, S, Shadforth, IP, Runions, J, Weimar, T, Hanton, SL, Griffin, JL, Bessant, C, Brandizzi, F, Hawes, C, Watson, RB, Dupree, P and Lilley, KS (2006) Mapping the Arabidopsis organelle proteome. Proc. Natl. Acad. Sci. U.S.A. 103:6518-23

Abstract

A challenging task in the study of the secretory pathway is the identification and localization of new proteins to increase our understanding of the functions of different organelles. Previous proteomic studies of the endomembrane system have been hindered by contaminating proteins, making it impossible to assign proteins to organelles. Here we have used the localization of organelle proteins by the isotope tagging technique in conjunction with isotope tags for relative and absolute quantitation and 2D liquid chromatography for the simultaneous assignment of proteins to multiple subcellular compartments. With this approach, the density gradient distributions of 689 proteins from Arabidopsis thaliana were determined, enabling confident and simultaneous localization of 527 proteins to the endoplasmic reticulum, Golgi apparatus, vacuolar membrane, plasma membrane, or mitochondria and plastids. This parallel analysis of endomembrane components has enabled protein steady-state distributions to be determined. Consequently, genuine organelle residents have been distinguished from contaminating proteins and proteins in transit through the secretory pathway.

Links

PubMed PMC1458916 Online version:10.1073/pnas.0506958103

Keywords

Arabidopsis/genetics; Arabidopsis/metabolism; Arabidopsis Proteins/genetics; Arabidopsis Proteins/metabolism; Organelles/genetics; Organelles/metabolism; Peptide Mapping; Proteome/genetics; Proteome/metabolism; Recombinant Fusion Proteins/genetics; Recombinant Fusion Proteins/metabolism; Subcellular Fractions/metabolism

Significance

Annotations

Gene product Qualifier GO ID GO term name Evidence Code with/from Aspect Notes Status


See also

References

See Help:References for how to manage references in GONUTS.