GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

PMID:15629940

From GONUTS
Jump to: navigation, search
Citation

Matson, SW and Ragonese, H (2005) The F-plasmid TraI protein contains three functional domains required for conjugative DNA strand transfer. J. Bacteriol. 187:697-706

Abstract

The F-plasmid-encoded TraI protein, also known as DNA helicase I, is a bifunctional protein required for conjugative DNA transfer. The enzyme catalyzes two distinct but functionally related reactions required for the DNA processing events associated with conjugation: the site- and strand-specific transesterification (relaxase) reaction that provides the nick required to initiate strand transfer and a processive 5'-to-3' helicase reaction that provides the motive force for strand transfer. Previous studies have identified the relaxase domain, which encompasses the first approximately 310 amino acids of the protein. The helicase-associated motifs lie between amino acids 990 and 1450. The function of the region between amino acids 310 and 990 and the region from amino acid 1450 to the C-terminal end is unknown. A protein lacking the C-terminal 252 amino acids (TraIDelta252) was constructed and shown to have essentially wild-type levels of transesterase and helicase activity. In addition, the protein was capable of a functional interaction with other components of the minimal relaxosome. However, TraIDelta252 was not able to support conjugative DNA transfer in genetic complementation experiments. We conclude that TraIDelta252 lacks an essential C-terminal domain that is required for DNA transfer. We speculate this domain may be involved in essential protein-protein interactions with other components of the DNA transfer machinery.

Links

PubMed PMC543555 Online version:10.1128/JB.187.2.697-706.2005

Keywords

Biological Transport; Conjugation, Genetic; DNA/metabolism; DNA Helicases/genetics; DNA Helicases/physiology; DNA-Binding Proteins/genetics; DNA-Binding Proteins/physiology; Escherichia coli Proteins; F Factor/genetics; F Factor/physiology; Gene Transfer Techniques; Genetic Complementation Test; Protein Binding; Protein Structure, Tertiary; Sequence Deletion

Significance

Annotations

Gene product Qualifier GO Term Evidence Code with/from Aspect Extension Notes Status


See also

References

See Help:References for how to manage references in GONUTS.