GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.
PMID:12169607
Citation |
Lindner, C, Hecker, M, Le Coq, D and Deutscher, J (2002) Bacillus subtilis mutant LicT antiterminators exhibiting enzyme I- and HPr-independent antitermination affect catabolite repression of the bglPH operon. J. Bacteriol. 184:4819-28 |
---|---|
Abstract |
The Bacillus subtilis antiterminator LicT regulates the expression of bglPH and bglS, which encode the enzymes for the metabolism of aryl-beta-glucosides and the beta-glucanase BglS. The N-terminal domain of LicT (first 55 amino acids) prevents the formation of rho-independent terminators on the respective transcripts by binding to target sites overlapping these terminators. Proteins of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) regulate the antitermination activity of LicT by phosphorylating histidines in its two PTS regulation domains (PRDs). Phosphorylation at His-100 in PRD-1 requires the PTS proteins enzyme I and HPr and the phosphorylated permease BglP and inactivates LicT. During transport and phosphorylation of aryl-beta-glucosides, BglP is dephosphorylated, which renders LicT active and thus leads to bglPH and bglS induction. In contrast, phosphorylation at His-207 and/or His-269 in PRD-2, which requires only enzyme I and HPr, is absolutely necessary for LicT activity and bglPH and bglS expression. We isolated spontaneous licT mutants expressing bglPH even when enzyme I and HPr were absent (as indicated by the designation "Pia" [PTS-independent antitermination]). Introduced in a ptsHI(+) strain, two classes of licT(Pia) mutations could be distinguished. Mutants synthesizing LicT(Pia) antiterminators altered in PRD-2 still required induction by aryl-beta-glucosides, whereas mutations affecting PRD-1 caused constitutive bglPH expression. One of the two carbon catabolite repression (CCR) mechanisms operative for bglPH requires the rho-independent terminator and is probably prevented when LicT is activated by P approximately His-HPr-dependent phosphorylation in PRD-2 (where the prefix "P approximately " stands for "phospho"). During CCR, the small amount of P approximately His-HPr present in cells growing on repressing PTS sugars probably leads to insufficient phosphorylation at PRD-2 of LicT and therefore to reduced bglPH expression. In agreement with this concept, mutants synthesizing a P approximately His-HPr-independent LicT(Pia) had lost LicT-modulated CCR. |
Links | |
Keywords |
Bacillus subtilis/genetics; Bacillus subtilis/metabolism; Bacterial Proteins/chemistry; Bacterial Proteins/physiology; Glucosidases/genetics; Mutation; Operon; Phosphoenolpyruvate Sugar Phosphotransferase System/genetics; Phosphoenolpyruvate Sugar Phosphotransferase System/physiology; Phosphotransferases (Nitrogenous Group Acceptor)/physiology; Transcription Factors/chemistry; Transcription Factors/physiology |
edit table |
Significance
Annotations
Gene product | Qualifier | GO Term | Evidence Code | with/from | Aspect | Extension | Notes | Status |
---|---|---|---|---|---|---|---|---|
involved_in |
GO:0045893: positive regulation of transcription, DNA-templated |
ECO:0000315: mutant phenotype evidence used in manual assertion |
P |
Seeded From UniProt |
complete | |||
GO:0045893: positive regulation of transcription, DNA-dependent |
ECO:0000315: |
P |
Table 2. |
complete | ||||
See also
References
See Help:References for how to manage references in GONUTS.