GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

ECOLI:PNP

From GONUTS
Jump to: navigation, search
Species (Taxon ID) Escherichia coli (strain K12). (83333)
Gene Name(s) pnp (ECO:0000255 with HAMAP-Rule:MF_01595)
Protein Name(s) Polyribonucleotide nucleotidyltransferase (ECO:0000255 with HAMAP-Rule:MF_01595)

Polynucleotide phosphorylase (ECO:0000255 with HAMAP-Rule:MF_01595) PNPase (ECO:0000255 with HAMAP-Rule:MF_01595)

External Links
UniProt P05055
EMBL J02638
U18997
U00096
AP009048
X00761
M14425
PIR H65106
RefSeq NP_417633.4
YP_491351.1
PDB 1SRO
3CDI
3CDJ
3GCM
3GLL
3GME
3H1C
PDBsum 1SRO
3CDI
3CDJ
3GCM
3GLL
3GME
3H1C
ProteinModelPortal P05055
SMR P05055
DIP DIP-10522N
IntAct P05055
MINT MINT-244786
STRING 511145.b3164
PhosSite P0810422
SWISS-2DPAGE P05055
PaxDb P05055
PRIDE P05055
EnsemblBacteria AAC76198
BAE77210
GeneID 12933437
947672
KEGG ecj:Y75_p3086
eco:b3164
PATRIC 32121746
EchoBASE EB0736
EcoGene EG10743
eggNOG COG1185
HOGENOM HOG000218327
InParanoid P05055
KO K00962
OMA RFMFHYN
OrthoDB EOG6WT8CC
PhylomeDB P05055
BioCyc EcoCyc:EG10743-MONOMER
ECOL316407:JW5851-MONOMER
MetaCyc:EG10743-MONOMER
BRENDA 2.7.7.8
EvolutionaryTrace P05055
PRO PR:P05055
Proteomes UP000000318
UP000000625
Genevestigator P05055
GO GO:0005829
GO:0016020
GO:0000175
GO:0035438
GO:0042802
GO:0000287
GO:0004654
GO:0003723
GO:0006402
GO:0009408
GO:0090503
GO:0006396
Gene3D 1.10.10.400
2.40.50.140
3.30.1370.10
3.30.230.70
HAMAP MF_01595
InterPro IPR001247
IPR015847
IPR004087
IPR004088
IPR012340
IPR012162
IPR027408
IPR015848
IPR003029
IPR020568
IPR022967
PANTHER PTHR11252
Pfam PF00013
PF03726
PF01138
PF03725
PF00575
PIRSF PIRSF005499
SMART SM00322
SM00316
SUPFAM SSF46915
SSF50249
SSF54211
SSF54791
SSF55666
TIGRFAMs TIGR03591
PROSITE PS50084
PS50126

Annotations

Qualifier GO ID GO term name Reference ECO ID ECO term name with/from Aspect Extension Notes Status
GO:0006402

mRNA catabolic process

PMID:2417233[1]

ECO:0000315

P

As shown in Table 2, RNase II and PNPase were used in a pulse-chase to measure the half-life of the radioactive labeled mRNA. RNase II was a mutant strain that would grow at 44 degrees Celsius. First, the mRNA and the RNase II/PNPase were incubated at 30 degrees Celsius then shifted to 44 degrees Celsius. At 44 degrees Celsius PNPase cannot function, but RNase II is still able to function. The table shows that there was a decrease in the degradation of mRNA when the temperature was raised to 44 degrees Celsius which corresponds to a loss of PNPase function. These results demonstrate that PNPase is important to the catabolic process of mRNA.

complete

part_of

GO:0016020

membrane

PMID:16858726[2]

ECO:0007005

high throughput direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0005829

cytosol

PMID:16858726[2]

ECO:0007005

high throughput direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0006401

RNA catabolic process

PMID:21873635[3]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

PANTHER:PTN000134193
TAIR:locus:2079429
UniProtKB:Q8TCS8

P

Seeded From UniProt

complete

part_of

GO:0005829

cytosol

PMID:21873635[3]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

EcoGene:EG10743
PANTHER:PTN000134193
UniProtKB:P9WI57
UniProtKB:Q8TCS8

C

Seeded From UniProt

complete

enables

GO:0004654

polyribonucleotide nucleotidyltransferase activity

PMID:21873635[3]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

EcoGene:EG10743
PANTHER:PTN000134193
RGD:1307987
TAIR:locus:2079429
TAIR:locus:2222662
UniProtKB:Q8TCS8

F

Seeded From UniProt

complete

enables

GO:0000175

3'-5'-exoribonuclease activity

PMID:21873635[3]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

EcoGene:EG10743
PANTHER:PTN000134193
TAIR:locus:2079429
TAIR:locus:2222662
UniProtKB:Q8TCS8

F

Seeded From UniProt

complete

enables

GO:0042802

identical protein binding

PMID:16858726[2]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:P05055

F

Seeded From UniProt

complete

enables

GO:0042802

identical protein binding

PMID:15236960[4]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:P05055

F

Seeded From UniProt

complete

enables

GO:0035438

cyclic-di-GMP binding

PMID:21320509[5]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0009408

response to heat

PMID:24580753[6]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0005829

cytosol

PMID:18304323[7]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0005829

cytosol

PMID:17309111[8]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0005829

cytosol

PMID:15911532[9]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

enables

GO:0004654

polyribonucleotide nucleotidyltransferase activity

PMID:13438894[10]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0000175

3'-5'-exoribonuclease activity

PMID:7509797[11]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0090503

RNA phosphodiester bond hydrolysis, exonucleolytic

GO_REF:0000108

ECO:0000364

evidence based on logical inference from manual annotation used in automatic assertion

GO:0000175

P

Seeded From UniProt

complete

involved_in

GO:0090503

RNA phosphodiester bond hydrolysis, exonucleolytic

GO_REF:0000108

ECO:0000364

evidence based on logical inference from manual annotation used in automatic assertion

GO:0000175

P

Seeded From UniProt

complete

enables

GO:0003676

nucleic acid binding

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR003029
InterPro:IPR004087

F

Seeded From UniProt

complete

enables

GO:0003723

RNA binding

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR004088
InterPro:IPR012162
InterPro:IPR015848
InterPro:IPR036456
InterPro:IPR036612

F

Seeded From UniProt

complete

enables

GO:0004654

polyribonucleotide nucleotidyltransferase activity

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR012162

F

Seeded From UniProt

complete

involved_in

GO:0006396

RNA processing

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR015848
InterPro:IPR036456

P

Seeded From UniProt

complete

involved_in

GO:0006402

mRNA catabolic process

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR012162

P

Seeded From UniProt

complete

enables

GO:0004654

polyribonucleotide nucleotidyltransferase activity

GO_REF:0000003

ECO:0000501

evidence used in automatic assertion

EC:2.7.7.8

F

Seeded From UniProt

complete

involved_in

GO:0006402

mRNA catabolic process

GO_REF:0000104

ECO:0000256

match to sequence model evidence used in automatic assertion

UniRule:UR000001279

P

Seeded From UniProt

complete

part_of

GO:0005737

cytoplasm

GO_REF:0000104

ECO:0000256

match to sequence model evidence used in automatic assertion

UniRule:UR000001279

C

Seeded From UniProt

complete

enables

GO:0000287

magnesium ion binding

GO_REF:0000104

ECO:0000256

match to sequence model evidence used in automatic assertion

UniRule:UR000001279

F

Seeded From UniProt

complete

enables

GO:0004654

polyribonucleotide nucleotidyltransferase activity

GO_REF:0000104

ECO:0000256

match to sequence model evidence used in automatic assertion

UniRule:UR000001279

F

Seeded From UniProt

complete

enables

GO:0003723

RNA binding

GO_REF:0000104

ECO:0000256

match to sequence model evidence used in automatic assertion

UniRule:UR000001279

F

Seeded From UniProt

complete

part_of

GO:0005737

cytoplasm

GO_REF:0000037
GO_REF:0000039

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0963
UniProtKB-SubCell:SL-0086

C

Seeded From UniProt

complete

enables

GO:0046872

metal ion binding

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0479

F

Seeded From UniProt

complete

enables

GO:0016779

nucleotidyltransferase activity

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0548

F

Seeded From UniProt

complete

enables

GO:0003723

RNA binding

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0694

F

Seeded From UniProt

complete

enables

GO:0016740

transferase activity

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0808

F

Seeded From UniProt

complete

Notes

References

See Help:References for how to manage references in GONUTS.

  1. Donovan, WP & Kushner, SR (1986) Polynucleotide phosphorylase and ribonuclease II are required for cell viability and mRNA turnover in Escherichia coli K-12. Proc. Natl. Acad. Sci. U.S.A. 83 120-4 PubMed GONUTS page
  2. 2.0 2.1 2.2 Lasserre, JP et al. (2006) A complexomic study of Escherichia coli using two-dimensional blue native/SDS polyacrylamide gel electrophoresis. Electrophoresis 27 3306-21 PubMed GONUTS page
  3. 3.0 3.1 3.2 3.3 Gaudet, P et al. (2011) Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Brief. Bioinformatics 12 449-62 PubMed GONUTS page
  4. Callaghan, AJ et al. (2004) Studies of the RNA degradosome-organizing domain of the Escherichia coli ribonuclease RNase E. J. Mol. Biol. 340 965-79 PubMed GONUTS page
  5. Tuckerman, JR et al. (2011) Cyclic di-GMP activation of polynucleotide phosphorylase signal-dependent RNA processing. J. Mol. Biol. 407 633-9 PubMed GONUTS page
  6. Krisko, A et al. (2014) Inferring gene function from evolutionary change in signatures of translation efficiency. Genome Biol. 15 R44 PubMed GONUTS page
  7. Ishihama, Y et al. (2008) Protein abundance profiling of the Escherichia coli cytosol. BMC Genomics 9 102 PubMed GONUTS page
  8. Zhang, N et al. (2007) Comparison of SDS- and methanol-assisted protein solubilization and digestion methods for Escherichia coli membrane proteome analysis by 2-D LC-MS/MS. Proteomics 7 484-93 PubMed GONUTS page
  9. Lopez-Campistrous, A et al. (2005) Localization, annotation, and comparison of the Escherichia coli K-12 proteome under two states of growth. Mol. Cell Proteomics 4 1205-9 PubMed GONUTS page
  10. LITTAUER, UZ & KORNBERG, A (1957) Reversible synthesis of polyribonucleotides with an enzyme from Escherichia coli. J. Biol. Chem. 226 1077-92 PubMed GONUTS page
  11. Li, Z & Deutscher, MP (1994) The role of individual exoribonucleases in processing at the 3' end of Escherichia coli tRNA precursors. J. Biol. Chem. 269 6064-71 PubMed GONUTS page