GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

ECOLI:CH60

From GONUTS
Jump to: navigation, search
Species (Taxon ID) Escherichia coli (strain K12). (83333)
Gene Name(s) groL (ECO:0000255 with HAMAP-Rule:MF_00600) (synonyms: groEL (ECO:0000255 with HAMAP-Rule:MF_00600), mopA)
Protein Name(s) 60 kDa chaperonin (ECO:0000255 with HAMAP-Rule:MF_00600)

GroEL protein (ECO:0000255 with HAMAP-Rule:MF_00600) Protein Cpn60 (ECO:0000255 with HAMAP-Rule:MF_00600)

External Links
UniProt P0A6F5
EMBL X07850
U14003
U00096
AP009048
X07899
M11294
PIR S56371
RefSeq NP_418567.1
YP_492286.1
PDB 1AON
1DK7
1DKD
1FY9
1FYA
1GR5
1GRL
1GRU
1J4Z
1JON
1KID
1KP8
1KPO
1LA1
1MNF
1OEL
1PCQ
1PF9
1SS8
1SVT
1SX3
1SX4
1XCK
2C7C
2C7D
2C7E
2CGT
2EU1
2NWC
2YEY
3C9V
3CAU
3VZ6
3VZ7
3VZ8
3WVL
3ZPZ
3ZQ0
3ZQ1
4AAQ
4AAR
4AAS
4AAU
4AB2
4AB3
PDBsum 1AON
1DK7
1DKD
1FY9
1FYA
1GR5
1GRL
1GRU
1J4Z
1JON
1KID
1KP8
1KPO
1LA1
1MNF
1OEL
1PCQ
1PF9
1SS8
1SVT
1SX3
1SX4
1XCK
2C7C
2C7D
2C7E
2CGT
2EU1
2NWC
2YEY
3C9V
3CAU
3VZ6
3VZ7
3VZ8
3WVL
3ZPZ
3ZQ0
3ZQ1
4AAQ
4AAR
4AAS
4AAU
4AB2
4AB3
ProteinModelPortal P0A6F5
SMR P0A6F5
BioGrid 852957
DIP DIP-339N
IntAct P0A6F5
MINT MINT-5232496
STRING 511145.b4143
SWISS-2DPAGE P0A6F5
PaxDb P0A6F5
PRIDE P0A6F5
EnsemblBacteria AAC77103
BAE78145
GeneID 12934083
948665
KEGG ecj:Y75_p4030
eco:b4143
PATRIC 32123855
EchoBASE EB0594
EcoGene EG10599
eggNOG COG0459
HOGENOM HOG000076290
InParanoid P0A6F5
KO K04077
OMA AAKMEWV
OrthoDB EOG6JDWBZ
PhylomeDB P0A6F5
BioCyc EcoCyc:EG10599-MONOMER
ECOL316407:JW4103-MONOMER
SABIO-RK P0A6F5
EvolutionaryTrace P0A6F5
PRO PR:P0A6F5
Proteomes UP000000318
UP000000625
Genevestigator P0A6F5
GO GO:0005829
GO:0016020
GO:0005524
GO:0016887
GO:0042802
GO:0051082
GO:0006200
GO:0007049
GO:0051301
GO:0006457
GO:0042026
GO:0009408
GO:0019068
Gene3D 1.10.560.10
3.50.7.10
HAMAP MF_00600
InterPro IPR018370
IPR001844
IPR002423
IPR027409
IPR027413
PANTHER PTHR11353
Pfam PF00118
PRINTS PR00298
SUPFAM SSF48592
SSF52029
TIGRFAMs TIGR02348
PROSITE PS00296

Annotations

Qualifier GO ID GO term name Reference ECO ID ECO term name with/from Aspect Extension Notes Status

NOT|involved_in

GO:0052212

modification of morphology or physiology of other organism via secreted substance involved in symbiotic interaction

PMID:11333970[1]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0016020

membrane

PMID:16858726[2]

ECO:0007005

high throughput direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0005829

cytosol

PMID:16858726[2]

ECO:0007005

high throughput direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:1990220

GroEL-GroES complex

PMID:21873635[3]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

EcoGene:EG10599
PANTHER:PTN000143644

C

Seeded From UniProt

complete

enables

GO:0051082

unfolded protein binding

PMID:21873635[3]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

EcoGene:EG10599
PANTHER:PTN000143677
SGD:S000004249

F

Seeded From UniProt

complete

involved_in

GO:0006458

'de novo' protein folding

PMID:21873635[3]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

PANTHER:PTN000143677
SGD:S000004249

P

Seeded From UniProt

complete

enables

GO:0042802

identical protein binding

PMID:9878052[4]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:P0A6F5

F

Seeded From UniProt

complete

enables

GO:0042802

identical protein binding

PMID:8618836[5]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:P0A6F5

F

Seeded From UniProt

complete

enables

GO:0042802

identical protein binding

PMID:7935790[6]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:P0A6F5

F

Seeded From UniProt

complete

enables

GO:0042802

identical protein binding

PMID:22575645[7]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:P0A6F5

F

Seeded From UniProt

complete

enables

GO:0042802

identical protein binding

PMID:18568038[8]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:P0A6F5

F

Seeded From UniProt

complete

enables

GO:0042802

identical protein binding

PMID:18334219[9]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:P0A6F5

F

Seeded From UniProt

complete

enables

GO:0042802

identical protein binding

PMID:17098196[10]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:P0A6F5

F

Seeded From UniProt

complete

enables

GO:0042802

identical protein binding

PMID:16858726[2]

ECO:0000353

physical interaction evidence used in manual assertion

UniProtKB:P0A6F5

F

Seeded From UniProt

complete

involved_in

GO:0019068

virion assembly

PMID:7015340[11]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0016887

ATPase activity

PMID:379350[12]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0009408

response to heat

PMID:8349564[13]

ECO:0000270

expression pattern evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:1990220

GroEL-GroES complex

PMID:9285585[14]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0051085

chaperone cofactor-dependent protein refolding

PMID:10532860[15]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0051082

unfolded protein binding

PMID:7935796[16]

ECO:0000315

mutant phenotype evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0051082

unfolded protein binding

PMID:8097882[17]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0042802

identical protein binding

PMID:7935790[6]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0016887

ATPase activity

PMID:379350[12]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0009314

response to radiation

PMID:27718375[18]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006457

protein folding

PMID:2573517[19]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0005829

cytosol

PMID:18304323[20]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

enables

GO:0005524

ATP binding

PMID:9285585[14]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0005524

ATP binding

PMID:8564544[21]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0000287

magnesium ion binding

PMID:8564544[21]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

enables

GO:0005524

ATP binding

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR002423
InterPro:IPR018370

F

Seeded From UniProt

complete

part_of

GO:0005737

cytoplasm

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR001844
InterPro:IPR018370

C

Seeded From UniProt

complete

involved_in

GO:0006457

protein folding

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR018370

P

Seeded From UniProt

complete

involved_in

GO:0042026

protein refolding

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR001844

P

Seeded From UniProt

complete

enables

GO:0005524

ATP binding

GO_REF:0000104

ECO:0000256

match to sequence model evidence used in automatic assertion

UniRule:UR000098153

F

Seeded From UniProt

complete

part_of

GO:0005737

cytoplasm

GO_REF:0000104

ECO:0000256

match to sequence model evidence used in automatic assertion

UniRule:UR000098153

C

Seeded From UniProt

complete

involved_in

GO:0042026

protein refolding

GO_REF:0000104

ECO:0000256

match to sequence model evidence used in automatic assertion

UniRule:UR000098153

P

Seeded From UniProt

complete

enables

GO:0051082

unfolded protein binding

GO_REF:0000104

ECO:0000256

match to sequence model evidence used in automatic assertion

UniRule:UR000098153

F

Seeded From UniProt

complete

involved_in

GO:0051301

cell division

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0132

P

Seeded From UniProt

complete

enables

GO:0000166

nucleotide binding

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0547

F

Seeded From UniProt

complete

involved_in

GO:0007049

cell cycle

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0131

P

Seeded From UniProt

complete

part_of

GO:0005737

cytoplasm

GO_REF:0000037
GO_REF:0000039

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0963
UniProtKB-SubCell:SL-0086

C

Seeded From UniProt

complete

enables

GO:0005524

ATP binding

GO_REF:0000037

ECO:0000322

imported manually asserted information used in automatic assertion

UniProtKB-KW:KW-0067

F

Seeded From UniProt

complete

GO:0031135

negative regulation of conjugation

PMID:17586648[22]

ECO:0000315

P

Fig 2 shows that cells carrying the groEL allele gained full transfer competence 90 mins after the heat shock while wild type cells gained full transfer competence after 180 min after the heat shock.

complete

GO:0031648

protein destabilization

PMID:17586648[22]

ECO:0000315

P

See Fig 5

complete

GO:1990220

GroEL-GroES complex

PMID:23437010[23]

ECO:0000314

C

See Figure 1 of associated PMID

complete
CACAO 9575

GO:0071218

cellular response to misfolded protein

PMID:15866952[24]

ECO:0000314

P

Figure 1. Shows a cellular response to misfolded protein aggregation via localization of the GroEL chaperone system to the β-galactosidase fusion protein VP1LAC aggreagate in the cytoplasm

complete

GO:0005737

cytoplasm

PMID:15866952[24]

ECO:0000314

C

Figure 1. shows GroEl chaperone system localization to aggregation-prone β-galactosidase fusion protein VP1LAC in the cytoplasm.

complete

Notes

References

See Help:References for how to manage references in GONUTS.

  1. Yoshida, N et al. (2001) Protein function. Chaperonin turned insect toxin. Nature 411 44 PubMed GONUTS page
  2. 2.0 2.1 2.2 Lasserre, JP et al. (2006) A complexomic study of Escherichia coli using two-dimensional blue native/SDS polyacrylamide gel electrophoresis. Electrophoresis 27 3306-21 PubMed GONUTS page
  3. 3.0 3.1 3.2 Gaudet, P et al. (2011) Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Brief. Bioinformatics 12 449-62 PubMed GONUTS page
  4. Siegers, K et al. (1999) Compartmentation of protein folding in vivo: sequestration of non-native polypeptide by the chaperonin-GimC system. EMBO J. 18 75-84 PubMed GONUTS page
  5. Azem, A et al. (1995) The protein-folding activity of chaperonins correlates with the symmetric GroEL14(GroES7)2 heterooligomer. Proc. Natl. Acad. Sci. U.S.A. 92 12021-5 PubMed GONUTS page
  6. 6.0 6.1 Braig, K et al. (1994) The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature 371 578-86 PubMed GONUTS page
  7. Chen, J et al. (2012) Fibrillogenic propensity of the GroEL apical domain: a Janus-faced minichaperone. FEBS Lett. 586 1120-7 PubMed GONUTS page
  8. Katayama, H et al. (2008) GroEL as a molecular scaffold for structural analysis of the anthrax toxin pore. Nat. Struct. Mol. Biol. 15 754-60 PubMed GONUTS page
  9. Ludtke, SJ et al. (2008) De novo backbone trace of GroEL from single particle electron cryomicroscopy. Structure 16 441-8 PubMed GONUTS page
  10. Chen, DH et al. (2006) An expanded conformation of single-ring GroEL-GroES complex encapsulates an 86 kDa substrate. Structure 14 1711-22 PubMed GONUTS page
  11. Tilly, K et al. (1981) Identification of a second Escherichia coli groE gene whose product is necessary for bacteriophage morphogenesis. Proc. Natl. Acad. Sci. U.S.A. 78 1629-33 PubMed GONUTS page
  12. 12.0 12.1 Hendrix, RW (1979) Purification and properties of groE, a host protein involved in bacteriophage assembly. J. Mol. Biol. 129 375-92 PubMed GONUTS page
  13. Chuang, SE & Blattner, FR (1993) Characterization of twenty-six new heat shock genes of Escherichia coli. J. Bacteriol. 175 5242-52 PubMed GONUTS page
  14. 14.0 14.1 Xu, Z et al. (1997) The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388 741-50 PubMed GONUTS page
  15. Goloubinoff, P et al. () Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfoleded state depends on two chaperonin proteins and Mg-ATP. Nature 342 884-9 PubMed GONUTS page
  16. Fenton, WA et al. (1994) Residues in chaperonin GroEL required for polypeptide binding and release. Nature 371 614-9 PubMed GONUTS page
  17. Braig, K et al. (1993) A polypeptide bound by the chaperonin groEL is localized within a central cavity. Proc. Natl. Acad. Sci. U.S.A. 90 3978-82 PubMed GONUTS page
  18. Sargentini, NJ et al. () Screen for genes involved in radiation survival of Escherichia coli and construction of a reference database. Mutat. Res. 793-794 1-14 PubMed GONUTS page
  19. Kusukawa, N et al. (1989) Effects of mutations in heat-shock genes groES and groEL on protein export in Escherichia coli. EMBO J. 8 3517-21 PubMed GONUTS page
  20. Ishihama, Y et al. (2008) Protein abundance profiling of the Escherichia coli cytosol. BMC Genomics 9 102 PubMed GONUTS page
  21. 21.0 21.1 Boisvert, DC et al. (1996) The 2.4 A crystal structure of the bacterial chaperonin GroEL complexed with ATP gamma S. Nat. Struct. Biol. 3 170-7 PubMed GONUTS page
  22. 22.0 22.1 Zahrl, D et al. (2007) GroEL plays a central role in stress-induced negative regulation of bacterial conjugation by promoting proteolytic degradation of the activator protein TraJ. J. Bacteriol. 189 5885-94 PubMed GONUTS page
  23. Wang, Y et al. (2013) Mechanisms involved in the functional divergence of duplicated GroEL chaperonins in Myxococcus xanthus DK1622. PLoS Genet. 9 e1003306 PubMed GONUTS page
  24. 24.0 24.1 Carrió, MM & Villaverde, A (2005) Localization of chaperones DnaK and GroEL in bacterial inclusion bodies. J. Bacteriol. 187 3599-601 PubMed GONUTS page