GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

DROME:Q961J3

From GONUTS
Jump to: navigation, search
Species (Taxon ID) Drosophila melanogaster (Fruit fly). (7227)
Gene Name(s) Pink1 (ECO:0000313 with FlyBase:FBgn0029891)
Protein Name(s) GH20931p (ECO:0000313 with EMBL:AAK92983.1)
External Links
UniProt Q961J3
EMBL AY051559
ProteinModelPortal Q961J3
PRIDE Q961J3
FlyBase FBgn0029891
SignaLink Q961J3
Bgee Q961J3
ExpressionAtlas Q961J3
GO GO:0005737
GO:0005739
GO:0016006
GO:0005524
GO:0004672
GO:0004674
GO:0048749
GO:0035234
GO:0000266
GO:0000422
GO:0007005
GO:0010637
GO:0043524
GO:0043069
GO:0007274
GO:0090141
GO:0042787
GO:0010821
GO:0006979
GO:0030382
InterPro IPR011009
IPR000719
IPR008271
Pfam PF00069
SUPFAM SSF56112
PROSITE PS50011
PS00108

Annotations

Qualifier GO ID GO term name Reference ECO ID ECO term name with/from Aspect Extension Notes Status

involved_in

GO:0090141

positive regulation of mitochondrial fission

PMID:21873635[1]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

FB:FBgn0029891
PANTHER:PTN001121970
RGD:1305769

P

Seeded From UniProt

complete

involved_in

GO:0006468

protein phosphorylation

PMID:21873635[1]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

FB:FBgn0029891
MGI:MGI:1916193
PANTHER:PTN000540563
UniProtKB:Q9BXM7

P

Seeded From UniProt

complete

part_of

GO:0005739

mitochondrion

PMID:21873635[1]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

FB:FBgn0029891
PANTHER:PTN001121970
UniProtKB:Q9BXM7
WB:WBGene00017137
ZFIN:ZDB-GENE-041212-53

C

Seeded From UniProt

complete

enables

GO:0004674

protein serine/threonine kinase activity

PMID:21873635[1]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

FB:FBgn0029891
MGI:MGI:1916193
PANTHER:PTN001121970
RGD:1305769
UniProtKB:D6WMX4
UniProtKB:Q9BXM7

F

Seeded From UniProt

complete

enables

GO:0004672

protein kinase activity

PMID:21873635[1]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

FB:FBgn0029891
PANTHER:PTN000540563
UniProtKB:Q9BXM7

F

Seeded From UniProt

complete

involved_in

GO:0000422

autophagy of mitochondrion

PMID:21873635[1]

ECO:0000318

biological aspect of ancestor evidence used in manual assertion

FB:FBgn0029891
PANTHER:PTN001121970
UniProtKB:Q9BXM7
WB:WBGene00017137

P

Seeded From UniProt

complete

involved_in

GO:1902956

regulation of mitochondrial electron transport, NADH to ubiquinone

PMID:25412178[2]

ECO:0000316

genetic interaction evidence used in manual assertion

FB:FBgn0019957

P

Seeded From UniProt

complete

enables

GO:0004674

protein serine/threonine kinase activity

PMID:24901221[3]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0006468

protein phosphorylation

PMID:24901221[3]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0007005

mitochondrion organization

PMID:24901221[3]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:1902956

regulation of mitochondrial electron transport, NADH to ubiquinone

PMID:24652937[4]

ECO:0000316

genetic interaction evidence used in manual assertion

FB:FBgn0019957

P

Seeded From UniProt

complete

involved_in

GO:0035234

ectopic germ cell programmed cell death

PMID:23523076[5]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

enables

GO:0004672

protein kinase activity

PMID:22645651[6]

ECO:0000314

direct assay evidence used in manual assertion

F

Seeded From UniProt

complete

involved_in

GO:0051654

establishment of mitochondrion localization

PMID:22396657[7]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0000422

autophagy of mitochondrion

PMID:20194754[8]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006511

ubiquitin-dependent protein catabolic process

PMID:20194754[8]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0010637

negative regulation of mitochondrial fusion

PMID:20194754[8]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0090141

positive regulation of mitochondrial fission

PMID:20194754[8]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0007274

neuromuscular synaptic transmission

PMID:20049710[9]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0010821

regulation of mitochondrion organization

PMID:19546216[10]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0005739

mitochondrion

PMID:19048081[11]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

part_of

GO:0005737

cytoplasm

PMID:19048081[11]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0007005

mitochondrion organization

PMID:18799731[12]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0030382

sperm mitochondrion organization

PMID:18799731[12]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0000266

mitochondrial fission

PMID:18443288[13]

ECO:0000316

genetic interaction evidence used in manual assertion

FB:FBgn0261276

P

Seeded From UniProt

complete

involved_in

GO:0007005

mitochondrion organization

PMID:18443288[13]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0000266

mitochondrial fission

PMID:18443288[13]

ECO:0000316

genetic interaction evidence used in manual assertion

FB:FBgn0026479

P

Seeded From UniProt

complete

involved_in

GO:0007005

mitochondrion organization

PMID:18230723[14]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0000266

mitochondrial fission

PMID:18230723[14]

ECO:0000316

genetic interaction evidence used in manual assertion

FB:FBgn0261276

P

Seeded From UniProt

complete

involved_in

GO:0000266

mitochondrial fission

PMID:18230723[14]

ECO:0000316

genetic interaction evidence used in manual assertion

FB:FBgn0026479

P

Seeded From UniProt

complete

involved_in

GO:0000266

mitochondrial fission

PMID:18230723[14]

ECO:0000316

genetic interaction evidence used in manual assertion

FB:FBgn0029870

P

Seeded From UniProt

complete

involved_in

GO:0030382

sperm mitochondrion organization

PMID:16672980[15]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0007005

mitochondrion organization

PMID:16672980[15]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0007005

mitochondrion organization

PMID:16672980[15]

ECO:0000316

genetic interaction evidence used in manual assertion

FB:FBgn0040491

P

Seeded From UniProt

complete

involved_in

GO:0030382

sperm mitochondrion organization

PMID:16672981[16]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0007005

mitochondrion organization

PMID:16672981[16]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

part_of

GO:0016006

Nebenkern

PMID:16672981[16]

ECO:0000314

direct assay evidence used in manual assertion

C

Seeded From UniProt

complete

involved_in

GO:0048749

compound eye development

PMID:16938835[17]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0006979

response to oxidative stress

PMID:16938835[17]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0043069

negative regulation of programmed cell death

PMID:16938835[17]

ECO:0000315

mutant phenotype evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0007005

mitochondrion organization

PMID:16818890[18]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0043524

negative regulation of neuron apoptotic process

PMID:16818890[18]

ECO:0000314

direct assay evidence used in manual assertion

P

Seeded From UniProt

complete

involved_in

GO:0000422

autophagy of mitochondrion

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR040110

P

Seeded From UniProt

complete

enables

GO:0004672

protein kinase activity

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR000719
InterPro:IPR008271

F

Seeded From UniProt

complete

enables

GO:0004674

protein serine/threonine kinase activity

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR040110

F

Seeded From UniProt

complete

enables

GO:0005524

ATP binding

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR000719

F

Seeded From UniProt

complete

involved_in

GO:0006468

protein phosphorylation

GO_REF:0000002

ECO:0000256

match to sequence model evidence used in automatic assertion

InterPro:IPR000719
InterPro:IPR008271

P

Seeded From UniProt

complete

Notes

References

See Help:References for how to manage references in GONUTS.

  1. 1.0 1.1 1.2 1.3 1.4 1.5 Gaudet, P et al. (2011) Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Brief. Bioinformatics 12 449-62 PubMed GONUTS page
  2. Pogson, JH et al. (2014) The complex I subunit NDUFA10 selectively rescues Drosophila pink1 mutants through a mechanism independent of mitophagy. PLoS Genet. 10 e1004815 PubMed GONUTS page
  3. 3.0 3.1 3.2 Shiba-Fukushima, K et al. (2014) PINK1-mediated phosphorylation of Parkin boosts Parkin activity in Drosophila. PLoS Genet. 10 e1004391 PubMed GONUTS page
  4. Morais, VA et al. (2014) PINK1 loss-of-function mutations affect mitochondrial complex I activity via NdufA10 ubiquinone uncoupling. Science 344 203-7 PubMed GONUTS page
  5. Yacobi-Sharon, K et al. (2013) Alternative germ cell death pathway in Drosophila involves HtrA2/Omi, lysosomes, and a caspase-9 counterpart. Dev. Cell 25 29-42 PubMed GONUTS page
  6. Woodroof, HI et al. (2011) Discovery of catalytically active orthologues of the Parkinson's disease kinase PINK1: analysis of substrate specificity and impact of mutations. Open Biol 1 110012 PubMed GONUTS page
  7. Liu, S et al. (2012) Parkinson's disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria. PLoS Genet. 8 e1002537 PubMed GONUTS page
  8. 8.0 8.1 8.2 8.3 Ziviani, E et al. (2010) Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc. Natl. Acad. Sci. U.S.A. 107 5018-23 PubMed GONUTS page
  9. Morais, VA et al. (2009) Parkinson's disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function. EMBO Mol Med 1 99-111 PubMed GONUTS page
  10. Lutz, AK et al. (2009) Loss of parkin or PINK1 function increases Drp1-dependent mitochondrial fragmentation. J. Biol. Chem. 284 22938-51 PubMed GONUTS page
  11. 11.0 11.1 Whitworth, AJ et al. () Rhomboid-7 and HtrA2/Omi act in a common pathway with the Parkinson's disease factors Pink1 and Parkin. Dis Model Mech 1 168-74; discussion 173 PubMed GONUTS page
  12. 12.0 12.1 Deng, H et al. (2008) The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 105 14503-8 PubMed GONUTS page
  13. 13.0 13.1 13.2 Yang, Y et al. (2008) Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proc. Natl. Acad. Sci. U.S.A. 105 7070-5 PubMed GONUTS page
  14. 14.0 14.1 14.2 14.3 Poole, AC et al. (2008) The PINK1/Parkin pathway regulates mitochondrial morphology. Proc. Natl. Acad. Sci. U.S.A. 105 1638-43 PubMed GONUTS page
  15. 15.0 15.1 15.2 Park, J et al. (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441 1157-61 PubMed GONUTS page
  16. 16.0 16.1 16.2 Clark, IE et al. (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441 1162-6 PubMed GONUTS page
  17. 17.0 17.1 17.2 Wang, D et al. (2006) Antioxidants protect PINK1-dependent dopaminergic neurons in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 103 13520-5 PubMed GONUTS page
  18. 18.0 18.1 Yang, Y et al. (2006) Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc. Natl. Acad. Sci. U.S.A. 103 10793-8 PubMed GONUTS page