GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

TableEdit

Jump to: navigation, search

PMID:3007939

You don't have sufficient rights on this wiki to edit tables. Perhaps you need to log in. Changes you make in the Table editor will not be saved back to the wiki

See Help for Help on this wiki. See the documentation for how to use the table editor

Citation

Heinisch, J (1986) Isolation and characterization of the two structural genes coding for phosphofructokinase in yeast. Mol. Gen. Genet. 202:75-82

Abstract

Yeast phosphofructokinase is an octamer composed of two different kinds of subunit. The genes coding for these subunits have been isolated by means of functional complementation in a pfk1 pfk2 double mutant. As a source of DNA the genomic library of Nasmyth and Tatchell (1980) constructed in the yeast multicopy vector YEp13 was used. Plasmids containing the information of one or the other gene were identified by back-transformation into pfk single mutants (pfk1 PFK2, PFK1 pfk2). Restriction maps of the respective insertions are provided. The genomic organization was confirmed by Southern analysis. Northern analysis showed hybridization to mRNAs of about 3.6 kb for both genes, corresponding to the molecular weight of the protein subunits. Transformation with one of the plasmids did not lead to an increase in phosphofructokinase activity. Subcloning of both genes in one multicopy vector (YEp13) and reintroduction into the yeast cell resulted in a 3.5-fold higher specific activity compared to the wild type. Overproduction of the protein subunits in this transformant was confirmed by SDS-polyacrylamide electrophoresis of crude extracts stained with Coomassie-blue. This was not accompanied by an increased ethanol production. The sequences encoding the two subunits were shown to share homology.

Links

PubMed

Keywords

Cloning, Molecular; DNA Restriction Enzymes; DNA, Fungal/isolation & purification; Escherichia coli/genetics; Ethanol/metabolism; Genes; Genes, Fungal; Genotype; Nucleic Acid Hybridization; Phosphofructokinase-1/genetics; Plasmids; Saccharomyces cerevisiae/enzymology; Saccharomyces cerevisiae/genetics; Species Specificity

public



Cancel