GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

TableEdit

Jump to: navigation, search

PMID:19180189

You don't have sufficient rights on this wiki to edit tables. Perhaps you need to log in. Changes you make in the Table editor will not be saved back to the wiki

See Help for Help on this wiki. See the documentation for how to use the table editor

Citation

Graff, JW, Ettayebi, K and Hardy, ME (2009) Rotavirus NSP1 inhibits NFkappaB activation by inducing proteasome-dependent degradation of beta-TrCP: a novel mechanism of IFN antagonism. PLoS Pathog. 5:e1000280

Abstract

Mechanisms by which viruses counter innate host defense responses generally involve inhibition of one or more components of the interferon (IFN) system. Multiple steps in the induction and amplification of IFN signaling are targeted for inhibition by viral proteins, and many of the IFN antagonists have direct or indirect effects on activation of latent cytoplasmic transcription factors. Rotavirus nonstructural protein NSP1 blocks transcription of type I IFNalpha/beta by inducing proteasome-dependent degradation of IFN-regulatory factors 3 (IRF3), IRF5, and IRF7. In this study, we show that rotavirus NSP1 also inhibits activation of NFkappaB and does so by a novel mechanism. Proteasome-mediated degradation of inhibitor of kappaB (IkappaBalpha) is required for NFkappaB activation. Phosphorylated IkappaBalpha is a substrate for polyubiquitination by a multisubunit E3 ubiquitin ligase complex, Skp1/Cul1/F-box, in which the F-box substrate recognition protein is beta-transducin repeat containing protein (beta-TrCP). The data presented show that phosphorylated IkappaBalpha is stable in rotavirus-infected cells because infection induces proteasome-dependent degradation of beta-TrCP. NSP1 expressed in isolation in transiently transfected cells is sufficient to induce this effect. Targeted degradation of an F-box protein of an E3 ligase complex with a prominent role in modulation of innate immune signaling and cell proliferation pathways is a unique mechanism of IFN antagonism and defines a second strategy of immune evasion used by rotaviruses.

Links

PubMed PMC2627925 Online version:10.1371/journal.ppat.1000280

Keywords

Animals; Cell Line; Cercopithecus aethiops; Gene Expression Regulation, Viral; I-kappa B Proteins/metabolism; Interferon Regulatory Factor-3/metabolism; Interferon-beta/metabolism; NF-kappa B/metabolism; Proteasome Endopeptidase Complex/metabolism; Rotavirus/genetics; Rotavirus/metabolism; Rotavirus Infections/metabolism; Rotavirus Infections/virology; Transcription Factor RelA/metabolism; Transcription, Genetic; Viral Nonstructural Proteins/genetics; Viral Nonstructural Proteins/metabolism; beta-Transducin Repeat-Containing Proteins/metabolism

public



Cancel