GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com


Jump to: navigation, search


You don't have sufficient rights on this wiki to edit tables. Perhaps you need to log in. Changes you make in the Table editor will not be saved back to the wiki

See Help for Help on this wiki. See the documentation for how to use the table editor


Watson, ML, Coghlan, M and Hundal, HS (2009) Modulating serine palmitoyl transferase (SPT) expression and activity unveils a crucial role in lipid-induced insulin resistance in rat skeletal muscle cells. Biochem. J. 417:791-801


Saturated fatty acids, such as palmitate, promote accumulation of ceramide, which impairs activation and signalling of PKB (protein kinase B; also known as Akt) to important end points such as glucose transport. SPT (serine palmitoyl transferase) is a key enzyme regulating ceramide synthesis from palmitate and represents a potential molecular target in curbing lipid-induced insulin resistance. In the present study we explore the effects of palmitate upon insulin action in L6 muscle cells in which SPT expression/activity has been decreased by shRNA (small-hairpin RNA) or sustained incubation with myriocin, an SPT inhibitor. Incubation of L6 myotubes with palmitate (for 16 h) increases intramyocellular ceramide and reduces insulin-stimulated PKB activation and glucose uptake. PKB inhibition was not associated with impaired IRS (insulin receptor substrate) signalling and was ameliorated by short-term treatment with myriocin. Silencing SPT expression (approximately 90%) by shRNA or chronic cell incubation with myriocin (for 7 days) markedly suppressed SPT activity and palmitate-driven ceramide synthesis; however, challenging these muscle cells with palmitate still inhibited the hormonal activation of PKB. This inhibition was associated with reduced IRS1/p85-PI3K (phosphoinositide 3-kinase) coupling that arises from diverting palmitate towards greater DAG (diacylglycerol) synthesis, which elevates IRS1 serine phosphorylation via activation of DAG-sensitive PKCs (protein kinase Cs). Treatment of SPT-shRNA cells or those treated chronically with myriocin with PKC inhibitors antagonized palmitate-induced loss in insulin signalling. The findings of the present study indicate that SPT plays a crucial role in desensitizing muscle cells to insulin in response to incubation with palmitate. While short-term inhibition of SPT ameliorates palmitate/ceramide-induced insulin resistance, sustained loss/reduction in SPT expression/activity promotes greater partitioning of palmitate towards DAG synthesis, which impacts negatively upon IRS1-directed insulin signalling.


PubMed Online version:10.1042/BJ20081149


Animals; Biophysical Processes; Cell Membrane/metabolism; Diglycerides/biosynthesis; Insulin/metabolism; Insulin/pharmacology; Insulin Receptor Substrate Proteins/metabolism; Insulin Resistance/physiology; Muscle, Skeletal/enzymology; Muscle, Skeletal/metabolism; Palmitates/metabolism; Palmitates/pharmacology; Phosphorylation; Rats; Serine C-Palmitoyltransferase/genetics; Serine C-Palmitoyltransferase/metabolism; Serine C-Palmitoyltransferase/physiology; Signal Transduction