GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

TableEdit

Jump to: navigation, search

PMID:18463693

You don't have sufficient rights on this wiki to edit tables. Perhaps you need to log in. Changes you make in the Table editor will not be saved back to the wiki

See Help for Help on this wiki. See the documentation for how to use the table editor

Citation

Hett, EC, Chao, MC, Deng, LL and Rubin, EJ (2008) A mycobacterial enzyme essential for cell division synergizes with resuscitation-promoting factor. PLoS Pathog. 4:e1000001

Abstract

The final stage of bacterial cell division requires the activity of one or more enzymes capable of degrading the layers of peptidoglycan connecting two recently developed daughter cells. Although this is a key step in cell division and is required by all peptidoglycan-containing bacteria, little is known about how these potentially lethal enzymes are regulated. It is likely that regulation is mediated, at least partly, through protein-protein interactions. Two lytic transglycosylases of mycobacteria, known as resuscitation-promoting factor B and E (RpfB and RpfE), have previously been shown to interact with the peptidoglycan-hydrolyzing endopeptidase, Rpf-interacting protein A (RipA). These proteins may form a complex at the septum of dividing bacteria. To investigate the function of this potential complex, we generated depletion strains in M. smegmatis. Here we show that, while depletion of rpfB has no effect on viability or morphology, ripA depletion results in a marked decrease in growth and formation of long, branched chains. These growth and morphological defects could be functionally complemented by the M. tuberculosis ripA orthologue (rv1477), but not by another ripA-like orthologue (rv1478). Depletion of ripA also resulted in increased susceptibility to the cell wall-targeting beta-lactams. Furthermore, we demonstrate that RipA has hydrolytic activity towards several cell wall substrates and synergizes with RpfB. These data reveal the unusual essentiality of a peptidoglycan hydrolase and suggest a novel protein-protein interaction as one way of regulating its activity.

Links

PubMed PMC2262848 Online version:10.1371/journal.ppat.1000001

Keywords

Aconitate Hydratase/physiology; Anti-Bacterial Agents/pharmacology; Bacterial Proteins/physiology; Cell Division/physiology; Cell Wall/enzymology; Cytokines/physiology; Drug Synergism; Gene Expression Regulation, Bacterial; Gene Expression Regulation, Enzymologic; Gene Silencing; Genes, Bacterial; Microbial Sensitivity Tests; Microbial Viability; Mycobacterium smegmatis/drug effects; Mycobacterium smegmatis/enzymology; Mycobacterium smegmatis/genetics; Mycobacterium tuberculosis/enzymology; N-Acetylmuramoyl-L-alanine Amidase/physiology; Recombinant Proteins/biosynthesis

public



Cancel