GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

TableEdit

Jump to: navigation, search

PMID:24468661

You don't have sufficient rights on this wiki to edit tables. Perhaps you need to log in. Changes you make in the Table editor will not be saved back to the wiki

See Help for Help on this wiki. See the documentation for how to use the table editor

Citation

Wang, P, Li, XZ, Cui, HR, Feng, YG and Wang, XY (2014) Identification and functional analysis of a novel parvulin-type peptidyl-prolyl isomerase from Gossypium hirsutum. Plant Physiol. Biochem. 76:58-66

Abstract

Plants have developed a variety of adaptive mechanisms to cope with stresses. A novel salt-induced gene was isolated during the screening of a NaCl-induced cDNA library of cotton seedlings. The gene was registered as accession number AY972810 in GenBank. Phylogenetic analysis suggested that the protein encoded by the gene belongs to the parvulin family of peptidyl-prolyl cis/trans isomerases (PPIases, EC 5.2.1.8). Northern blot analysis indicated that the mRNA accumulation of GhPPI was induced by salt stress. Subcellular localization revealed that GhPPI (Gossypium hirsutum peptidyl-prolyl isomerase) was localized in the nucleus. The purified recombinant GhPPI could accelerate the initial velocity of the cis-trans conversion of peptidyl-prolyl bonds of a tetrapeptide in a GhPPI concentration-dependent manner. Recombinant GhPPI also suppressed protein aggregation under denaturing conditions using Gdn-HCl (guanidine hydrochloride), suggesting an additional chaperone activity. Several amino acid residues in GhPPI were speculated to be involved in substrate binding or catalysis based on molecular modeling and docking results. The activity of the peptidyl-prolyl isomerase was affected when the relevant amino acids were mutated. Among the 11 mutants, five amino acids mutations led to the enzyme activities decreased to 30% as that of wild type, and two reduced to approximately 60%. To the best of our knowledge, this is the first report of a plant parvulin PPIase involved in the salt stress response.

Links

PubMed Online version:10.1016/j.plaphy.2013.12.020

Keywords

public



Cancel