GONUTS has been updated to MW1.31 Most things seem to be working but be sure to report problems.

Have any questions? Please email us at ecoliwiki@gmail.com

TableEdit

Jump to: navigation, search

PMID:9843966

You don't have sufficient rights on this wiki to edit tables. Perhaps you need to log in. Changes you make in the Table editor will not be saved back to the wiki

See Help for Help on this wiki. See the documentation for how to use the table editor

Citation

Gilbreth, M, Yang, P, Bartholomeusz, G, Pimental, RA, Kansra, S, Gadiraju, R and Marcus, S (1998) Negative regulation of mitosis in fission yeast by the shk1 interacting protein skb1 and its human homolog, Skb1Hs. Proc. Natl. Acad. Sci. U.S.A. 95:14781-6

Abstract

We previously provided evidence that the protein encoded by the highly conserved skb1 gene is a putative regulator of Shk1, a p21(Cdc42/Rac)-activated kinase (PAK) homolog in the fission yeast Schizosaccharomyces pombe. skb1 null mutants are viable and competent for mating but less elongate than wild-type S. pombe cells, whereas cells that overexpress skb1 are hyperelongated. These phenotypes suggest a possible role for Skb1 as a mitotic inhibitor. Here we show genetic interactions of both skb1 and shk1 with genes encoding key mitotic regulators in S. pombe. Our results indicate that Skb1 negatively regulates mitosis by a mechanism that is independent of the Cdc2-activating phosphatase Cdc25 but that is at least partially dependent on Shk1 and the Cdc2 inhibitory kinase Wee1. We provide biochemical evidence for association of Skb1 and Shk1 with Cdc2 in S. pombe, suggesting that Skb1 and Shk1 inhibit mitosis through interaction with the Cdc2 complex, rather than by an indirect mechanism. These results provide evidence of a previously undescribed role for PAK-related protein kinases as mitotic inhibitors. We also describe the cloning of a human homolog of skb1, SKB1Hs, and show that it can functionally replace skb1 in S. pombe. Thus, the molecular functions of Skb1-related proteins have likely been substantially conserved through evolution.

Links

PubMed PMC24526

Keywords

Amino Acid Sequence; Carrier Proteins/genetics; Gene Expression Regulation, Fungal; Humans; Methyltransferases; Mitosis/genetics; Molecular Sequence Data; Protein-Serine-Threonine Kinases/genetics; Schizosaccharomyces/cytology; Schizosaccharomyces/genetics; Schizosaccharomyces pombe Proteins; Sequence Alignment; Sequence Homology, Amino Acid; p21-Activated Kinases

public



Cancel